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Abstract

Recent debates on Generative Artifi cial Intelligence (GenAI) have centred on quantifi able concerns such as computational cost, carbon 
emissions, and benchmark performance. Yet the most consequential risks may be those that are less visible: the gradual reshaping of 
human cognition, creativity, and epistemic trust. This paper introduces the concept of AI as cognitive ecology, situating generative systems 
not merely as tools or agents, but as a pervasive environment in which thought now unfolds. Building on this paradigm, we propose 
the HORIZON taxonomy of invisible costs: Homogenization, Offl  oading (deskilling), Resource externalities, Information integrity, 
Zoomed-in feedback loops, Organizational memory loss, and Normative drift. We illustrate each dimension through conceptual analysis 
and lightweight audits, and propose new indicators including DAO (Diversity of AI Outputs), CDQ (Cognitive Dependence Quotient), 
EIS (Epistemic Integrity Score), and RTE (Resource Transparency Equivalent). We argue that sustaining AI innovation requires not only 
technical and environmental monitoring, but active stewardship of cognitive ecologies.
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1. Introduction

The landscape of modern technology is undergoing a profound 
transformation with the rapid ascent of Generative Artifi cial 
Intelligence (GenAI). Defi ned by their capacity to produce novel 
content ranging from text, images, and audio to software code, 
video, and simulations based on extensive training datasets, GenAI 
models have quickly permeated various sectors, captivating 
widespread attention and promising to revolutionise business 
and everyday life (Rana et al., 2024). Predictions from leading 
industry analysts, such as Gartner, anticipate that over 80% of 
enterprises will have integrated GenAI APIs or deployed GenAI-
enabled applications by 2026, underscoring its swift adoption 
and perceived transformative power (Rana et al., 2024). This 

pervasive integration is driven by GenAI’s immense potential 
to enhance organisational eff ectiveness, streamline operations, 
and provide a signifi cant competitive edge (Wamba et al., 2023). 
For instance, GenAI is already being leveraged across diverse 
business functions, including marketing, project management, 
data analysis, customer relationship management, content 
creation, human resources, employee training, and coding. In 
software engineering, GenAI tools are envisioned as indispensable 
allies throughout the development lifecycle from ideation and 
architectural design to code generation, testing, deployment, 
and maintenance, with projections suggesting a 20-45% surge 
in productivity by automating tasks such as drafting code and 
performing root-cause analyses (Russo, 2024). The immediate 
popularity of models such as ChatGPT, following its public 
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release in November 2022, highlights a demonstrated human-like 
competence in diverse areas, further accelerating its integration 
into critical organisational processes (Rana et al., 2024). This 
widespread, fast-paced adoption positions GenAI not merely as 
an incremental improvement but as a disruptive innovation poised 
to fundamentally reshape industries (Russo, 2024).

The rapid proliferation and increasing societal reliance on AI 
systems have, rightly, spurred extensive ethical and societal 
debates. Current discourse within AI ethics largely centres on 
tangible, quantifiable costs and concerns, predominantly revolving 
around three interconnected pillars: accuracy and performance, 
bias and fairness, and environmental and resource consumption.

Accuracy and performance are paramount concerns, as AI 
models are increasingly deployed in high-stakes domains such 
as healthcare, finance, and criminal justice, where precision is 
critical (Nathim et al., 2024). Ensuring that AI systems deliver 
optimised and timely outcomes, as expected by users, is a key 
ethical consideration (Rana et al., 2024). However, research 
continually highlights the challenges in guaranteeing accuracy, 
particularly given that GenAI models, relying on pre-trained data 
and algorithms, can generate imprecise results due to inherent 
flaws in their training data or underlying logic (Balasubramaniam 
et al., 2023). The functional integrity of AI-generated code, for 
instance, remains a fundamental concern in software engineering, 
with varying degrees of success reported depending on task 
complexity and programming language (Russo, 2024).

Bias and fairness represent a complex and multifaceted ethical 
challenge, recognised as critical for establishing trust and ensuring 
equitable treatment across diverse populations (Nathim et al., 2024; 
Russo, 2024). Biased AI systems can inadvertently perpetuate and 
even exacerbate existing societal discrimination, stereotyping, 
and social inequities (Modi, 2023). Sources of bias are deeply 
embedded throughout the AI lifecycle, from data collection and 
human annotation to algorithmic design itself (Nathim et al., 
2024). While various bias mitigation techniques, such as data 
pre-treatment, algorithmic adjustments, and adversarial testing, 
have been proposed, they often involve trade-offs with model 
performance and accuracy, complicating efforts to balance fairness 
and efficacy. Furthermore, the absence of universal methods 
for assessing fairness and a consensus on appropriate metrics 
underscores the ongoing difficulty in systematically identifying 
and mitigating bias, necessitating accessible and easily integratable 
tools and frameworks for practitioners.

Parallel to these operational and social concerns, the environmental 
and resource costs of AI, particularly GenAI, are emerging as a 
critical, albeit often overlooked, ethical dimension. GenAI models 
are distinctly resource-intensive, contributing significantly to 
carbon dioxide emissions and demanding massive amounts of 
water and land for their operation (Kneese and Young, 2024). The 
overall energy consumption of the Information and Communication 
Technologies (ICT) sector, which includes AI, is rapidly escalating, 
with global data centre electricity usage increasing by 20-40% 
annually and straining existing renewable energy infrastructures 
(Luccioni et al., 2024; Inie et al., 2025b). Crucially, the inference 
(deployment) phase of Machine Learning (ML) models, often 
overlooked in favour of training costs, can account for a substantial 
portion (80-90%) of total cloud computing demand and contributes 
as much or more to environmental impact (Luccioni et al., 2024). 
Multi-purpose, generative architectures, such as GPT models, 
are orders of magnitude more environmentally costly than task-
specific systems, yet a lack of transparency from major model 

providers regarding training and hosting data complicates accurate 
assessment and accountability (Inie et al., 2025b). This calls for 
the integration of environmental factors, including downstream 
impacts on communities and ecosystems, directly into the design 
space of AI, advocating for a holistic approach to sustainable AI 
development (Kneese and Young, 2024).

While these discussions on accuracy, bias, and environmental 
impact are vital, they primarily address the visible or immediately 
quantifiable aspects of AI’s societal footprint. This paper argues 
that a crucial dimension of AI’s impact remains underexplored: the 
invisible cognitive, cultural, and epistemic costs associated with 
the widespread adoption and integration of generative models. 
This gap arises from a prevailing tendency in AI development 
and evaluation to valorise influential benchmarks as objective 
markers of progress, despite their inherent limitations in capturing 
complex, real-world capabilities and broader societal implications 
(Raji et al., 2021; Eriksson et al., 2025).

The existing critique of AI benchmarks, though extensive, still 
struggles to fully articulate these invisible costs. Researchers 
have demonstrated that many benchmarks suffer from construct 
validity issues, often failing to measure what they claim, especially 
when aspiring to assess “general” or “universal” capabilities (Raji 
et al., 2021). This problematic framing leads to misguidance in 
task design, underreporting of inherent biases, and the potential 
misuse of models based on false performance presentations. 
The historical Common Task Framework (CTF), designed for 
tightly-scoped, practically-oriented tasks, has been inappropriately 
extended to abstract “performance,” promoting “glamour and 
deceit” over meaningful progress (Raji et al., 2021). These 
evaluations are often based on “samples of convenience” rather 
than systematically chosen, theoretically sound tasks. This narrow 
focus extends to the modalities evaluated, with a vast majority of 
benchmarks concentrating on text-based AI, leaving other crucial 
modalities such as audio, images, and multimodal systems largely 
unexamined (Gomez et al., 2024). This also results in a lack of 
diversity, with many datasets being Anglo-centric and under-
representing minorities, raising concerns about the inclusion of 
multiple perspectives on complex ethical topics (Rauh et al., 
2024).

Furthermore, AI benchmarking practices are deeply political, 
performative, and generative, actively shaping how AI models 
are trained and applied rather than passively measuring their 
capabilities (Orr and Kang, 2024). They operate as “normative 
instruments that perpetuate particular epistemological 
perspectives”, often prioritising efficiency over care, universality 
over contextuality, and impartiality over positionality (Scheuerman 
et al., 2021). The economic, competitive, and commercial roots 
of capability-oriented benchmarks embed them within corporate 
marketing strategies, fuelling AI hype and attracting investors 
(Eriksson et al., 2025). This creates an incentive mismatch, 
where the pursuit of state-of-the-art (SOTA) performance often 
overshadows high-quality evaluations, leading to “SOTA-chasing” 
and a “winner’s curse” at the expense of genuine insight and 
explanation (Church and Hestness, 2019). This competitive 
culture, often likened to a “sport,” reinforces path dependencies 
in AI research, favouring certain methodologies and stifling others 
that do not align with dominant benchmark logic (Eriksson et al., 
2025). The gaming of benchmarks is another critical concern, 
with evidence of data contamination, “sandbagging” (models 
strategically underperforming), and cherry-picking results due 
to a lack of transparency and reproducibility resources (Eriksson 
et al., 2025). The dubious community vetting process, where 
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benchmarks gain influence through citation popularity rather than 
inherent suitability, further compounds these issues. This leads to 
“peer-washing,” where problematic datasets maintain authority 
despite their shortcomings (Schlangen, 2020). The rapid pace of 
AI development also contributes, as benchmarks quickly become 
saturated and outdated, unable to effectively evaluate increasingly 
complex models or keep pace with continuous model iterations 
and new capabilities (McIntosh et al., 2025). Finally, the inherent 
complexity of AI and the presence of unknown unknowns limit 
current benchmarking capabilities. Human knowledge constraints 
prevent a full assessment of emerging AI capabilities that may 
surpass conventional understanding, potentially leading to latent 
vulnerabilities and unforeseen risks (Eriksson et al., 2025). Efforts 
to fine-tune AI models for safety, for instance, have been shown 
to degrade performance in other areas or introduce entirely new 
security risks. These fundamental fragilities in quantitative AI 
evaluation highlight that current benchmarking is ill-suited to 
single-handedly provide the safety and capability assurances 
demanded by policymakers (van der Weij et al., 2024).

This paper posits that these acknowledged shortcomings in AI 
evaluation, from construct validity failures to competitive dynamics 
and unknown vulnerabilities, are not merely technical glitches but 
symptoms of a deeper neglect: a failure to account for AI’s role 
in a cognitive ecology. We define AI as a cognitive ecology as an 
interconnected system where human and artificial intelligences 
interact, adapt, and co-evolve, influencing each other’s cognitive 
processes, cultural norms, and knowledge structures in profound, 
often invisible ways. The current evaluation paradigm, fixated on 
isolated performance metrics and tangible outputs, fails to capture 
how GenAI models subtly reshape human cognition (e.g., through 
reliance on AI for problem-solving), infuse cultural biases (e.g., 
through reinforcement of implicit assumptions in datasets), and 
redefine epistemic authority (e.g., by influencing what constitutes 
“truth” or “expertise” in a data-driven world). Overlooking 
these invisible costs of the transformations in human thinking, 
cultural values, and the very nature of knowledge production and 
validation poses a significant risk to the responsible development 
and integration of AI into society. While some initial qualitative 
insights touch upon ethical and legal considerations, including bias 
and explainability concerns from developers themselves (Russo, 
2024), these remain peripheral to the primary focus on adoption 
drivers such as compatibility, etc. This paper aims to foreground 
these subtle yet pervasive impacts.

Therefore, this paper seeks to reveal these invisible cognitive, 
cultural, and epistemic costs of generative models by proposing 
a comprehensive framework for their systematic analysis. By 
viewing AI as a cognitive ecology, we shift the focus from merely 
assessing model performance to understanding the dynamic 
interplay between AI systems and the broader human and 
informational environment. This approach allows us to unpack the 
subtle ways GenAI alters human decision-making, shapes societal 
norms, and reconfigures knowledge landscapes. Our contribution 
will be structured around a novel HORIZON taxonomy, which 
systematically categorises these heretofore unacknowledged costs, 
providing a critical lens for future research, design, and policy. 
We argue that a holistic understanding of GenAI’s true impact 
necessitates moving beyond quantifiable outputs to embrace an 
ecological perspective that accounts for its transformative, often 
hidden, influence on human thought, culture, and knowledge.

The remainder of this paper is structured as follows: Section 2 
provides a comprehensive literature review outlining existing 
approaches to AI evaluation and their limitations, further 
substantiating the identified gap. Section 3 introduces our 

theoretical framework, “AI as Cognitive Ecology,” detailing 
its core tenets. Section 4 presents the HORIZON taxonomy, 
operationalising the cognitive, cultural, and epistemic dimensions 
of AI’s invisible costs. Section 5 discusses the implications of this 
ecological perspective for ethical AI development, responsible 
innovation, and policy formulation. Finally, Section 6 offers 
concluding remarks and outlines future research directions.

2. AI as Cognitive Ecology: A Paradigm Shift

2.1 From Tools to Ecologies

The rapid integration of artificial intelligence (AI) into diverse 
societal domains has prompted a reliance on metaphors to 
conceptualise its function and impact. Predominantly, AI is framed 
as a tool, agent, or assistant (Chan et al., 2025; Kandasamy, 2025). 
This perspective views AI as an artefact to be wielded by human 
users, designed to achieve specific goals or automate predefined 
tasks (Stryker, 2024). For instance, within environmental computer 
science, AI is widely perceived as a set of methods, a helpful tool 
such as GIS, Statistics or Data Visualisation (Sinwell et al., 2021). 
Similarly, the concept of Agentic AI emphasises LLM-driven 
entities that interact with tools, environments, and other agents 
to accomplish tasks with a degree of autonomy (Kandasamy, 
2025). Even the fundamental definition of software agents posits 
them as autonomous, goal-directed computational entities capable 
of perceiving and acting upon their environment. This tool-use 
pattern is a recognised design approach in Agentic AI systems, 
defining a tool as a piece of code that the Agent uses to observe or 
act towards achieving its goal. The Agents and Artefacts (A&A) 
approach further models’ artefacts as first-class abstractions for 
modelling and designing MAS working environments, drawing 
inspiration from Activity Theory (Omicini et al., 2009). This 
common understanding suggests AI, whether as a simple utility 
or a more sophisticated agent, primarily serves as a means to an 
end, an instrument for human or system objectives (Sinwell et 
al., 2021).

Despite their intuitive appeal and widespread adoption, these 
metaphors fall short of capturing the transformative, systemic 
impact of advanced AI models on human cognition and societal 
structures. The tool metaphor, in particular, implies a passive 
instrument entirely subject to external control, obscuring AI’s 
increasingly active and even generative role (Markolf et al., 2021). 
While artefacts, as discussed in the A&A meta-model, are indeed 
explicitly designed to provide a certain function (Omicini et al., 
2009), they also possess both an enabling and a constraining 
function and shape the way human beings interact with reality 
(Omicini et al., 2009). This suggests a deeper influence than 
mere utility. Furthermore, these mediating tools embody social 
practices, reflect historical experiences, and influence not only the 
external behaviour, but also the mental functioning of individuals 
using them (Omicini et al., 2009). When AI is seen merely as a 
tool in fields such as Environmental Computer Science, it can lead 
researchers to focus narrowly on getting a good prediction from 
a very specific dataset, rather than developing general applicable 
models that align with the broader aims of pure AI research 
(Sinwell et al., 2021). This implies that the metaphor itself can 
inadvertently limit the scope and ambition of AI’s application.

The metaphors of learning and training for AI, while pervasive, 
similarly risk misleading practitioners and the public by implying 
human-like cognitive processes that are not necessarily present 
(Murray-Rust et al., 2022). As Murray-Rust et al. (2022) argue, 
these impressive surface-level performances do not necessarily 
correspond with other abilities that humans have, such as 
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generalisation and reasoning (Murray-Rust et al., 2022). The 
black box metaphor, often used to describe the opacity of AI 
systems, further compounds this issue by fostering a sense of 
powerlessness and diverting attention from understanding the 
underlying mechanisms or accountability. Similarly, the term 
bias in AI, while seemingly analogous to human prejudice, can 
conceal its multiple technical meanings and the pernicious idea 
that talking about bias raises the possibility of an unbiased model, 
thereby sidestepping the crucial understanding that biases are 
always relative to something, and that something needs articulation 
(Hildebrandt, 2021). Fundamentally, these established metaphors, 
while simplifying and connecting to existing knowledge, illuminate 
and hide, centring particular ideas, marginalising others, and 
shaping fields of practice (Murray-Rust et al., 2022). The very 
idea that AI systems may lead to “implicitly or explicitly releasing 
control to algorithms (Markolf et al., 2021) points to a profound 
shift in agency that a simple tool cannot encapsulate. Even the 
development of control planes to manage tool orchestration in 
Agentic AI systems (Kandasamy, 2025) highlights the growing 
complexity inherent in integrating and managing these so-called 
“tools.”

While the agent or assistant metaphors offer a more dynamic view 
of AI, emphasising their autonomy, goal-seeking behaviour, and 
interaction capabilities (Chan et al., 2025; Kandasamy, 2025), 
they still tend to centre the AI as a discrete entity rather than 
recognising its pervasive influence on the underlying cognitive and 
social environment. An AI agent, as defined by Chan et al. (2025), 
directly interacts with the world and adapts to underspecified 
tasks, going beyond traditional software. However, even these 
advanced agents operate within a complex agent infrastructure, 
technical systems and shared protocols external to agents that 
are designed to mediate and influence their interactions with 
and impacts on their environments” (Chan et al., 2025). This 
external infrastructure, encompassing elements like identity 
binding, certification, agent IDs, channels, oversight layers, and 
communication protocols, implies that AI’s influence extends 
far beyond its individual actions. Moreover, the emergence of 
automated thinking, as conceptualised by Sellar and Gulson 
(2021), challenges the notion of AI as merely an agent executing 
pre-programmed rules. This nonconscious cognition operates 
across and within the full spectrum of cognitive agents: humans, 
animals, and technical devices (Sellar and Gulson, 2021), and 
can even make inferences about the most optimal decision in 
a given situation while remaining ignorant of a larger set of 
indeterminate possibilities”. This hints at a more active, and at 
times unpredictable, reshaping of cognitive processes than the 
agent metaphor implies. The recognition that AI’s capabilities may 
augment and replace people (Markolf et al., 2021) and contribute 
to implicitly or explicitly releasing control to algorithms further 
underscores its transformative potential, extending beyond the 
boundaries of an individual agent.

To adequately grapple with these profound shifts, we advocate for 
a paradigm shift in how AI is conceptualised: as an integral part of 
a cognitive ecology or cognitive infrastructure that fundamentally 
reshapes the conditions of thought, decision-making, and societal 
organisation. This ecological metaphor posits AI not as a mere 
instrument, but as a pervasive force that alters the environment 
in which human cognition operates, much like the advent of 
language, literacy, or new media systems (Omicini et al., 2009; 
Sellar and Gulson, 2021). As Chester and Allenby argue, the rise 
of novel digital and connected technologies signifies “not simply 
the rise of cyber-physical systems as hybrid physical and digital 
assets but, ultimately, the integration of legacy systems into a new 

cognitive ecosystem (Chester and Allenby, 2023). This cognitive 
ecosystem is characterised as an ecology of massive data flows, 
artificial intelligence, institutional and intellectual structures, and 
connected technologies, poised to alter how humans and artificial 
intelligence understand and control our world. It is an emerging 
and highly complex feature of an increasingly anthropogenic planet 
that integrates functionalities from diverse sources, including 
increasingly powerful AI tools such as generative AI, to the rules, 
regulations, venture capitalists, and social media systems that 
co-evolve with the technologies. This view emphasises that AI 
is not just affecting what we do, but how we think and perceive 
the world, and indeed, “what the systems fundamentally are”.

This reframing positions AI as a constituent element of a planetary-
scale computation (Chester and Allenby, 2023), where algorithms 
become embedded in a multi-layered “digital infrastructure space 
that acts as a medium of information and an operating system 
for shaping the city. This infrastructure space has a disposition 
that emerges, in part, from the actions of algorithms, leading to 
distributed, emergent forms of cognition that can have powerful 
effects. Sellar and Gulson (2021), drawing on Parisi’s work, 
define this as “automated thinking,” a form of nonconscious 
cognition that syncopates with human thinking and inhabits 
different temporalities, opening up temporal regimes in which 
the costs of consciousness become more apparent and more 
systemically exploitable. This emergent automation introduces 
creative uncertainty, where algorithms can “reason through and 
with uncertainty and engender their own form of knowing. The 
implication is that AI, as cognitive infrastructure, is not just 
performing tasks but actively contributing to the generation of 
new knowledge, values, and decision-making processes, thereby 
changing the possibilities for education policy and the governance 
of school systems. This perspective acknowledges that control 
efforts may need to focus on establishing relationships with AI that 
recognise that cyber-technologies will be guiding us in ways that 
we may not always fully understand (Markolf et al., 2021). Thus, 
the ecological metaphor prompts a shift from assessing individual 
AI performance to understanding the broader transformation of 
our “cognitive ecosystem”(Chester and Allenby, 2023).

2.2 Historical Cognitive Infrastructures

Human cognition has always been scaffolded by infrastructures 
that extend and reshape mental capacities (Loh and Kanai, 
2016). Language was the first and most foundational, enabling 
the offloading of thought onto others’ minds and distributing 
cognitive load through collaboration (Dror and Harnad, 2008; 
Baker, 2009). This biological development not only expanded 
communication but also rewired neural systems, making complex 
everyday thought possible (Pandey et al., 2023).

Writing and later the printing press externalized memory, 
overcoming the fragility of oral transmission and facilitating 
reflection, abstraction, and collective knowledge growth (Dror and 
Harnad, 2008). These innovations generated a period of “cognitive 
inflation,” while the printing press standardized and democratized 
access to knowledge, embedding infrastructures into the cultural 
and epistemic fabric of societies.

The Internet represents a more radical shift: a global “Cognitive 
Commons” where cognizes, databases, and software agents 
interoperate at speeds and scales inconceivable for individual 
minds (Loh and Kanai, 2016). Unlike earlier infrastructures that 
stored or transmitted knowledge, it actively generates information, 
creating a qualitatively new dimension of cognitive offloading.
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This trajectory has been theorized through the Extended Mind 
Thesis (EMT), which argues that cognition can extend beyond 
the “skin and skull” into the environment (Pandey et al., 2023). A 
notebook serving as external memory exemplifi es such coupling 
(Baker, 2009). Yet debate persists: while external tools enhance 
cognition, they are not themselves cognizers. The prevailing view 
holds cognition as “narrow” - biologically instantiated - while 
acknowledging that tools can reconfi gure cognitive performance 
and mental states (Dror and Harnad, 2008).

The neuroscientifi c implications are evident in the rise of Digital 
Natives. Growing up in hyperlinked, interactive environments 
has fostered shallow processing styles, rapid attentional shifts, 
and diminished deep reading, linked to changes in brain circuitry 
for executive control and sustained focus (Loh and Kanai, 2016). 
While digital offl  oading can strategically free resources, it also 
risks attenuating contemplative skills, making technological 
deprivation feel akin to cognitive impairment.

Thus, the historical arc from language to the Internet demonstrates 
more than quantitative enhancement of performance. It reveals 
qualitative transformations in cognition itself, reshaping how 
humans process information, sustain attention, and even understand 
their own minds.

2.3 Why Ecology?

Why adopt an ecological perspective on cognition and artifi cial 
intelligence (AI)? Because cognition does not reside in isolated 
brains but emerges from interdependent systems that link humans, 
artefacts, environments, and cultural practices. An ecological lens 
foregrounds interdependence, diversity, fragility, and resilience 
qualities essential for understanding how intelligence, human or 
artifi cial, is sustained. By situating AI within a cognitive ecology 
rather than treating it as an autonomous tool or agent, we can 
better diagnose risks that arise not from discrete errors but from 
systemic imbalances such as homogenization, skill erosion, or 
epistemic collapse.

(Hutchins, 2010) describes cognitive ecology as the study of 
cognitive phenomena in context, where meaning-making processes 
unfold through webs of mutual dependence among people, 
environments, and material systems. This position challenges 
the cognition as internal operation model of classical cognitivism, 
which confi ned mind to the boundaries of skull and skin. Instead, 
cognitive processes extend into sensorimotor engagements, social 
interactions, and cultural artefacts. Bateson’s (1972) famous 
parable of the blind man with a stick illustrates this point: cognition 
cannot be bounded at the skin, since the stick, the ground, and the 
sensory loops that run through them are integral to perception and 
action. To excise any part of this ecology would be to render the 
system inexplicable. Similarly, when AI systems become part of 
human practices, they enter into feedback loops that are no less 
constitutive of cognition than sticks, maps, or scripts.

(Tribble and Sutton, 2011) expand this framework by highlighting 
how cognition spreads or smears across heterogeneous resources: 
brains and bodies, tools and texts, institutions and environments. 
No one dimension holds analytic primacy, since cognition is 
always hybrid and distributed. A Shakespearean performance, 
for example, depended on the interplay of actors’ bodies, 
playbooks, audience conventions, acoustic environments, and 
economic structures, none of which could be abstracted away 
without distorting the whole. By analogy, contemporary AI must 
be situated within ensembles that include human expertise, cultural 

norms, infrastructures, and ecological limits. Thought and action 
are always “system-level activities” (Tribble and Sutton, 2011).

This ecological perspective makes visible risks that are otherwise 
obscured. If cognition is distributed, systemic imbalances rather 
than isolated errors become the primary source of fragility. 
Homogenization of knowledge through algorithmic fi ltering, 
erosion of embodied skills displaced by automation, or the collapse 
of epistemic diversity in networked cultures are not technical 
malfunctions but ecological pathologies. Hutchins (2010) stresses 
that cognitive ecosystems gain their resilience from diversity and 
redundancy: multiple pathways of representation, interaction, 
and interpretation buff er the system against failure. By contrast, 
overreliance on uniform AI models risks brittleness, where local 
perturbations propagate into systemic crises.
  
 

  
    

Figure 1: AI as Cognitive Ecology (system diagram / hub-and-spokes)

As illustrated in Figure 1, AI must be understood as part of a 
cognitive ecology in which humans, culture, knowledge, and 
environment are mutually conditioned by and through artifi cial 
systems. The fi gure visually underscores the paradigm shift: AI is 
not a discrete agent but a node in an ecological web of cognition. 
Each arrow represents a bidirectional relationship AI shapes human 
practices, cultural forms, epistemic resources, and environmental 
impacts, while simultaneously being shaped by them. This 
relational framing highlights not only the interdependence but 
also the fragility of the system. Just as ecosystems can collapse 
when keystone species are disrupted, cognitive ecologies can 
falter when systemic diversity or balance is lost.

Crucially, this model also foregrounds resilience. Cognitive 
ecologies adapt as elements shift: when one dimension is stressed, 
others may compensate. Tribble and Sutton (2011) describe how 
changes in theatrical technologies from gestural performance to 
lighting design reshaped the distribution of attention and skill 
across actors, technicians, and audiences. Analogously, as AI 
transforms knowledge production and labour, resilience will 
depend on how humans, institutions, and environments redistribute 
capacities. Recognizing AI as ecology thus invites us to cultivate 
redundancies, preserve epistemic pluralism, and design for 
adaptive diversity rather than effi  ciency alone.

By reframing AI as ecology, we align with a broader trajectory 
in cognitive science that has moved from reductionism toward 
holism. Hutchins (2010) predicts that the reality of the rich 
interconnectivity of the brain, body, and world” will draw together 
disparate strands of embodied, enactive, and distributed cognition 
into a coherent ecological synthesis. For cultural historians, 
Tribble and Sutton (2011) stress that cognition must be analysed 
historically and materially, since artefacts and practices are 
not external to thought but constitutive of it. Extending these 
insights to AI, we see that artifi cial systems are neither external 
tools nor independent agents: they are deeply embedded in, and 
transformative of, our cognitive ecologies.

Treating AI as part of a cognitive ecology illuminates the systemic 
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conditions under which intelligence, human and artifi cial, 
emerges and persists. It makes clear that risks arise not only 
from fl awed algorithms but from ecological imbalances, and that 
resilience depends on maintaining interdependence, diversity, 
and adaptability across humans, cultures, environments, and 
knowledge systems.

3. HORIZON Taxonomy of Invisible Costs

The HORIZON taxonomy (Figure 2) visualises the seven 
dimensions of invisible costs. Like stressors in an ecological system, 
each dimension radiates from the same central phenomenon: the 
embedding of AI within human cognitive environments.

Figure 2: HORIZON Taxonomy of Invisible Costs (Petal Ecology Flower 
Layout)

3.1 Homogenization

A central invisible cost of generative systems is the homogenization 
of cultural and linguistic expression. By design, large language 
models and text-to-image systems are probabilistic engines: 
they optimize for the most statistically likely continuation of 
a prompt, privileging median rather than marginal outputs 
(Sourati et al., 2025). This leads to stylistic fl attening, where 
outputs are grammatically fl uent but stylistically neutral and 
culturally mainstream. As these systems are integrated across 
creative, academic, and professional domains, the very statistical 
strength that powers them risks producing a narrowing of cultural 
possibility.

The homogenizing dynamic is visible at multiple levels. At 
the level of language, empirical studies have shown that LLM-
mediated writing reduces lexical and stylistic variety, erasing 
markers of individuality and cultural nuance (Sourati et al., 2025; 
Zhang et al., 2025). Survey-based evidence demonstrates that 
when research participants rely on AI to compose open-ended 
responses, outputs cluster around homogenised, positive, and 
generic formulations, masking underlying diversity in beliefs 
and attitudes (Zhang et al., 2025). Cross-cultural experiments 
likewise reveal how AI suggestions pull writers from non-Western 
contexts toward Western stylistic norms, diminishing culturally 
specifi c expression in favour of globally legible but culturally 
impoverished forms (Agarwal et al., 2025).

Visual culture exhibits similar dynamics. Analyses of text-to-image 
systems show that reliance on standardised prompt engineering 
practices, coupled with model training on predominantly Western-
centric datasets, generates a convergence toward familiar 
aesthetic templates (Palmini and Cetinic, 2024). Even when 

user input introduces originality, the reinforcement of shared 
prompt structures and the popularity-driven curation of outputs 
contribute to visual uniformity. Large-scale studies of online art-
sharing platforms confi rm that the introduction of AI assistance 
reduces visual novelty across portfolios, as adoption spreads and 
community norms recalibrate around AI-infl uenced aesthetics 
(Zhou and Lee, 2024).

Cultural and social implications follow. As generative systems 
privilege dominant linguistic and visual repertoires, they risk 
marginalising minority voices and alternative epistemologies. 
The fl attening of linguistic markers not only undermines cultural 
preservation but also disrupts fi elds that rely on the richness of 
stylistic variation, such as psychological diagnostics, personnel 
evaluation, and sociolinguistic research (Sourati et al., 2025). 
In media and communication contexts, generative tools often 
replicate normative identities and suppress non-normative 
narratives, reproducing what (Gillespie, 2024) terms the politics 
of visibility, where representational harms range from stereotyping 
to symbolic erasure. Similar processes are evident in urban-cultural 
domains: generative AI tools, when asked to depict local contexts, 
tend to foreground commercialised and tourist-oriented elements, 
narrowing the perceived scope of cultural life and exacerbating 
existing power imbalances (Campo-Ruiz, 2025).

Taken together, these fi ndings suggest that homogenization is not 
merely a by-product of generative probability distributions but 
a systemic cultural cost with implications for diversity, equity, 
and knowledge production. The convergence toward the median 
amplifi es dominant cultural logics while silencing peripheral ones, 
producing an aesthetic monoculture that risks eroding the pluralism 
essential to cultural vitality (Karpouzis, 2024; Singh, 2024). This 
homogenization is subtle yet pervasive: it is experienced not as 
overt censorship but as the quiet disappearance of diff erence, 
drowned beneath the polished fl uency of statistical averages.

3.2 Offl  oading (Deskilling)

One of the most insidious invisible costs of AI integration is the 
deskilling that results from the offl  oading of cognitive labour. As 
individuals and organisations increasingly delegate tasks such as 
drafting, analysis, recall, and problem-solving to AI systems, core 
human competencies risk atrophy. Scholars have long recognised 
that automation reshapes expertise by transforming workers from 
active decision-makers into passive overseers of “black box” 
processes (Rinta-Kahila et al., 2018). While effi  ciency gains are 
undeniable, the erosion of tacit knowledge and procedural know-
how leaves workers and by extension, societies vulnerable when 
systems fail.

The phenomenon extends beyond technical work into broader 
domains of cognition and professional judgment. (Matueny, 2025) 
argue that dependence on AI fosters an illusion of competence, 
wherein individuals mistake AI-generated fl uency for personal 
mastery. This misperception discourages active engagement 
and deep learning, weakening memory, critical thinking, and 
metacognitive regulation. Over time, as with the Google Eff ect 
in memory research, what is routinely offl  oaded to machines is 
less likely to be internally retained. The danger is that individuals 
come to rely on external systems to such an extent that resilience 
in non-digital contexts diminishes.

Empirical studies underscore this fragility. When organisations 
discontinue automated systems, latent deskilling becomes 
painfully visible. In a case study of accountants, the removal of 
an automated fi xed-asset management system forced employees to 
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relearn procedures they had long neglected, exposing significant 
gaps in both declarative and procedural knowledge (Rinta-Kahila 
et al., 2018). Such disruptions illustrate that automation not only 
reduces the demand for skills in the short term but may also impair 
the capacity to recover them in the long term. Similarly, Bushuyev 
et al. (2024) highlight the erosion of managerial competencies 
in innovation projects, as reliance on AI-generated insights 
undermines experiential decision-making, tacit coordination, and 
creative risk assessment—skills once central to project leadership.

Yet, deskilling is not uniformly negative. Ong and Png (2021) 
provide evidence that automation-induced simplification of 
cognitively demanding tasks, such as cashiering or way-finding 
for drivers, can enhance job satisfaction and expand labour supply. 
By lowering entry barriers, technological deskilling increases 
workforce participation, particularly in low-skill sectors. However, 
this amenity-driven benefit trades off against the longer-term 
resilience of cognitive skills, echoing the broader tension between 
efficiency and robustness in work design.

The future of labour markets may therefore hinge on how societies 
navigate this dialectic. Zhang et al. (2024) suggest that while 
sensory-physical tasks are highly susceptible to automation, social-
cognitive and higher-order reasoning skills retain comparative 
resilience. However, sustaining this resilience requires deliberate 
investment in cognitive and metacognitive skills, ensuring that 
workers cultivate adaptive expertise rather than ceding intellectual 
agency to AI. Deskilling is thus not a deterministic outcome of 
automation but a contingent one, shaped by how technologies are 
integrated into human systems and whether offloading is balanced 
with opportunities for skill development.

3.3 Resource Externalities

The material costs of artificial intelligence (AI) systems extend 
beyond carbon emissions, manifesting in substantial yet often 
invisible demands on electricity and freshwater resources. While 
these externalities are rarely factored into assessments of AI’s 
sustainability, their ecological implications are profound.

First, the energy intensity of AI training and inference has 
escalated sharply with the proliferation of large-scale models. A 
single rack of AI hardware, such as NVIDIA H100 GPU clusters, 
can consume nearly 39 times the electricity of an average U.S. 
household, with hyper-scale data centres approaching the annual 
electricity demand of entire metropolitan areas (Sunkara, 2025). 
This surge in demand is not evenly distributed, as regional data 
centre expansions have destabilising effects on national energy 
infrastructures; for instance, Ireland projects that data centres 
may soon account for nearly one-third of its total electricity use 
(Inie et al., 2025a). While AI-driven optimisation can improve 
energy efficiency in sectors such as manufacturing and smart grids 
(Nurhaeni et al., 2024; Zakizadeh and Zand, 2024), the rebound 
effect suggests that these savings are outpaced by the exponential 
growth of computational demand, raising questions about whether 
AI constitutes a net energy-saving technology.

Equally significant, though less visible, are AI’s water footprints. 
Cooling systems for AI-intensive data centres are overwhelmingly 
water-dependent, with evaporative cooling converting freshwater 
into vapour that is permanently lost from local watersheds 
(Natarajan, 2025). Training and inference runs for advanced 
large language models can therefore consume millions of litres 
of freshwater, often in drought-prone regions such as Arizona 
and Northern Virginia, where competition with residential and 
agricultural users sharpens issues of environmental justice 

(Natarajan, 2025). Empirical estimates highlight this magnitude: 
inference with GPT-4 for a 10-page report can consume over 
50 litres of water, compared to less than one litre for smaller-
scale models (Shumba et al., 2025). Such disparities underscore 
how infrastructural decisions amplify regional vulnerabilities, 
producing what has been termed the hydro-digital paradox, 
technological progress intensifying local water scarcity (Natarajan, 
2025).

Attempts at mitigation have focused on embedding AI into 
sustainable data centre design, including water-efficient cooling, 
hardware optimisation, and recycling systems (Hiremath, 2024). 
Yet even these innovations risk redistributing rather than resolving 
burdens. Life cycle assessments (LCAs) of generative AI services 
indicate that focusing narrowly on carbon overlooks intertwined 
costs such as water depletion, metal scarcity, and e-waste (Berthelot 
et al., 2024). In this sense, AI exemplifies the broader challenge 
of “carbon tunnel vision” in sustainability discourse: privileging 
emissions metrics at the expense of recognising the full spectrum 
of material dependencies (Berthelot et al., 2024).

The resource externalities of AI reveal a contradiction at the 
heart of digital modernity. While AI is celebrated as a driver of 
sustainability and efficiency, its hidden appetites for electricity 
and freshwater expose new vectors of ecological strain. These 
costs are not marginal but systemic, disproportionately affecting 
regions already vulnerable to energy and water scarcity. Future 
governance of AI infrastructure must therefore reckon with these 
invisible costs, shifting sustainability frameworks from carbon-
centric metrics toward integrated assessments that account for 
multi-resource entanglements.

3.4 Information Integrity

A central but often underappreciated invisible cost of generative 
models lies in their destabilisation of epistemic reliability. While 
such models excel at producing fluent and persuasive language, 
their confidence calibration is systematically misaligned with 
truth value, generating conjectures with the same assertive tone 
as verified facts (Krishnan et al., 2024; Tao et al., 2025). This 
epistemic opacity erodes not only the reliability of individual 
outputs but also the category of knowledge itself, as users 
become less able to distinguish justified belief from manufactured 
plausibility.

Philosophically, these challenges conventional accounts of 
epistemic authority. As (Ferrario et al., 2024) argue, AI systems 
cannot be granted genuine epistemic expertise because they 
lack the understanding and intellectual virtues necessary for 
such a status. Their outputs, however accurate in narrow tasks, 
remain severed from justificatory structures. Evans et al. (2021) 
underscore this risk in their call for truthful AI, noting that scalable, 
personalized untruths may undermine not only individual decisions 
but also collective epistemic and democratic deliberation.

Technical responses have sought to reintegrate uncertainty as 
an explicit epistemic signal. Approaches such as black-box 
uncertainty quantification for LLM-as-a-judge (Wagner et al., 
2024), uncertainty-aware fine-tuning (Krishnan et al., 2024), 
and atypical-presentation recalibration in healthcare (Qin et 
al., 2024) demonstrate that calibrated confidence can enhance 
trustworthiness without sacrificing performance. Yet, large-scale 
benchmarking reveals that accuracy and uncertainty are often 
decoupled: high-performing models can remain overconfident and 
poorly calibrated, particularly on knowledge-heavy tasks (Tao et 
al., 2025). Proposals for structured epistemic architectures (Wright, 
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2025) suggest a more radical path, embedding propositional 
commitment, contradiction detection, and normative truth 
maintenance into reasoning systems to prevent epistemic drift.

The invisible cost, therefore, is not reducible to factual error or 
isolated hallucination (Ji et al., 2024; Lu, 2025). It is the cumulative 
erosion of epistemic integrity where the persuasive fluency of 
generative systems destabilises the social trust infrastructure 
that underpins knowledge practices. Absent robust mechanisms 
for epistemic calibration, users risk conflating probabilistic 
text generation with warranted assertion, thereby transforming 
knowledge ecosystems into arenas of ambient uncertainty. 
This cost manifests less in discrete failures than in the long-
term corrosion of epistemic norms. Safeguarding information 
integrity thus requires both technical calibration mechanisms and 
normative frameworks that re-anchor generative systems within 
truth-conducive practices.

3.5 Zoomed-in Feedback Loops

As generative AI systems increasingly contribute to the pool of 
online data, recursive loops emerge wherein models are trained 
on their own outputs. This recursive dynamic produces a class 
of invisible costs that extend beyond technical degradation to 
deeper epistemic narrowing of knowledge systems. Recent 
theoretical and empirical work converges on the phenomenon 
of model collapse: the progressive deterioration of generative 
performance as synthetic data dominates training corpora (Borji, 
2024; Seddik et al., 2024). Collapse manifests statistically when 
recursive training erodes the tails of the original distribution, 
reducing diversity and yielding homogenised, repetitive, or even 
degenerate outputs (Seddik et al., 2024). The effect is not confined 
to text but generalises across modalities, as recursive inpainting 
experiments show successive degradation of images until they 
drift toward meaningless artefacts (Conde et al., 2025).

The recursive feedback mechanism operates as both a technical and 
epistemic loop. Technically, each generation of models amplifies 
the approximation errors of its predecessors, accelerating drift 
away from the underlying real-world distribution (Borji, 2024). 
Epistemically, the iterative reliance on self-produced data narrows 
the representational horizon: what models “know” is increasingly 
filtered through their own outputs, risking an autophagic cycle 
where the ecosystem feeds on itself (Shumailov et al., 2024), 
as discussed in (Borji, 2024). This dynamic threatens not only 
accuracy but the breadth of knowledge itself, substituting richness 
of human-authored data with recursive self-reference.

Empirical investigations suggest two partial mitigations. First, 
mixing real and synthetic data can attenuate collapse, though only 
when the ratio of authentic data remains sufficiently high (Seddik 
et al., 2024). Second, accumulation rather than replacement 
of training data, where each generation augments rather than 
overwrites prior corpora bounds error growth and avoids total 
collapse (Gerstgrasser et al., 2024). Yet these mitigations 
underscore the structural fragility of recursive feedback loops: 
they do not eliminate the epistemic narrowing but only slow its 
progression.

Viewed through the HORIZON taxonomy, these loops exemplify 
invisible costs: the degradation is subtle, distributed, and often 
invisible in the short term, but accumulates over cycles to reshape 
entire knowledge systems. Unlike immediate technical failures, 
feedback loops risk a gradual impoverishment of the epistemic 
commons. In effect, they collapse diversity into predictability, 
precision into noise, and world-models into self-referential 

artifacts an outcome as socially consequential as it is technically 
avoidable.

3.6 Organisational Memory Loss

As organisations increasingly embed critical processes into 
proprietary AI models and automated systems, a subtle but 
profound erosion of organisational memory emerges. Historically, 
institutional knowledge has been sustained through collective 
practices, documents, mentorship, and shared routines that both 
preserved tacit expertise and enabled its intergenerational transfer 
(Falckenthal et al., 2025). The contemporary shift toward codifying 
workflows in prompt templates and AI-generated outputs risks 
displacing these social mechanisms of knowledge retention. While 
AI-enhanced knowledge management systems promise efficiency 
gains through semantic indexing, dynamic retrieval, and automated 
synthesis (Jarrahi et al., 2023; Gadde, 2025), their reliance on 
vendor-controlled infrastructures centralises knowledge in external 
architectures. This creates a form of epistemic dependency, where 
the durability of organizational intelligence becomes contingent 
upon proprietary platforms rather than distributed human memory.

The implications of this shift are twofold. First, the automation 
of tacit knowledge through machine learning and conversational 
capture bots provides an expedient but fragile archive. Systems 
such as those described by Satsangi (2019) demonstrate how 
AI can collect employees’ day-to-day experiences and convert 
them into structured repositories. Yet, while such tools preserve 
fragments of experiential data, they decouple knowledge from its 
embodied context, stripping away the relational and situational 
nuance that traditionally sustains expertise (Collins, 2010; cited 
in Falckenthal et al., 2025). Without mechanisms of embodied 
apprenticeship or interactive sense-making, what persists is an 
attenuated representation of practice rather than the adaptive, 
resilient memory required for organisational continuity (Nonaka 
and Takeuchi, 2021, cited in Falckenthal et al., 2025).

Second, organisational dependence on AI intermediaries reshapes 
the ecology of knowledge transfer. Multi-agent system research 
shows that distributed knowledge exchange thrives when 
responsibilities are shared through organisational protocols and 
negotiated roles (Farias et al., 2024). By contrast, outsourcing 
memory to algorithmic infrastructures reduces opportunities for co-
constructed meaning and weakens the social level of organisational 
learning. The result is not only an erosion of collective memory but 
also a narrowing of adaptive capacity in the face of disruptions.

This trajectory aligns with concerns in the knowledge management 
literature that AI systems, while augmenting knowledge creation 
and retrieval, simultaneously fragment institutional continuity 
by privileging efficiency over social embedding (Jarrahi et 
al., 2023). The more organisations normalise the substitution 
of mentoring, storytelling, and shadowing with AI-mediated 
archives, the more fragile their epistemic resilience becomes. 
Thus, organisational memory loss is not a passive by-product 
of technological change but an invisible cost where the very 
infrastructures designed to preserve knowledge paradoxically 
accelerate its decontextualization and externalisation.

3.7 Normative Drift

Among the less visible but most consequential dimensions of 
the HORIZON taxonomy of invisible costs is normative drift, 
the gradual, often unexamined process by which AI systems 
default guardrails, refusals, and stylistic conventions become 
taken-for-granted social norms. Unlike explicit regulation, where 
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laws or policies are openly debated and codified, normative drift 
occurs through cumulative micro-interactions with AI systems, 
where corporate or technical defaults are silently naturalised as 
appropriate ways of speaking, refusing, or reasoning.

Guardrails such as refusal styles or politeness defaults are 
never normatively neutral. As Šekrst et al. (2024) show in their 
discussion of customizable guardrails, even technical interventions 
designed for harm reduction encode normative choices about 
civility, safety, and appropriateness. For example, when a language 
model consistently responds to risky or controversial queries with 
deferential refusals, it implicitly sets expectations about what 
kinds of discourse are considered beyond the pale, not just for 
machines, but for humans engaging with them. Over time, these 
outputs can act as norm entrepreneurs, subtly steering cultural 
expectations of politeness, risk tolerance, or moral acceptability.

The concern is not merely theoretical. Scholars of design and 
technology have long argued that artefacts embody values and 
political commitments (Vermaas and Stone, 2020). Yet what 
distinguishes AI is the opacity of its normative loadings and 
the velocity of its diffusion. Unlike infrastructure norms, which 
evolve slowly across decades, AI defaults can globalise within 
months, reaching billions of users before any meaningful public 
deliberation (Luccioni and Bengio, 2019). This creates a profound 
mismatch between the speed of technological diffusion and the 
slower timescales of democratic norm formation (Baronchelli, 
2024).

This acceleration magnifies the risks of homogenization. Lim et 
al. (2023); Seo and Kwon (2024) emphasise that social norms 
surrounding AI are shaped not only by regulators and ethicists 
but also by the daily practices of developers, corporations, and 
end-users. When billions of interactions reinforce uniform refusal 
phrasings or “politeness defaults,” the result is a powerful feedback 
loop that narrows cultural variation and epistemic diversity. Such 
bottom-up norm formation is particularly concerning because 
it often occurs without transparency about whose values are 
embedded or how alternatives might be considered.

Moreover, cross-cultural tensions sharpen the stakes of normative 
drift. As Younas (2023) argues, many AI ethics frameworks 
reflect Western liberal-democratic traditions, privileging certain 
norms of individual autonomy or secular risk assessment. When 
these defaults are exported globally, they risk marginalising 
alternative cultural traditions of moral reasoning—for example, 
relational ethics in Confucian contexts or Ubuntu ethics in African 
traditions. If left unexamined, normative drift may thus not only 
flatten communicative styles but also entrench a form of cultural 
imperialism under the guise of “safety.”

The governance literature underscores that algorithms already 
act as regulators, shaping visibility, credibility, and access to 
information (Saurwein et al., 2015; Lucero, 2020). Yet current 
governance debates focus predominantly on transparency, bias, 
and accountability, with far less attention to the subtle normative 
imprint of guardrails. To resist unexamined drift, governance 
must expand to include explicit acknowledgement of value-laden 
defaults, participatory processes for shaping refusal styles, and 
pluralistic infrastructures that allow users to select among different 
normative frameworks rather than being locked into a single 
corporate template.

Taken together, normative drift exemplifies the broader dynamics 
captured in the HORIZON taxonomy of invisible costs (see 
Table 1). Like homogenization, it threatens cultural diversity; 

like information integrity failures, it risks epistemic trust. But 
its distinctive danger lies in its silence: norms become standards 
without ever being publicly chosen. Preventing normative drift, 
therefore, requires mechanisms of transparency, participatory 
deliberation, and cultural co-genesis, ensuring that the invisible 
costs of AI do not calcify into invisible norms.

Table 1. HORIZON Taxonomy of Invisible Costs in Generative AI
Dimension Definition Example Risk Possible 

Mitigation

H – Homog-
enization

Convergence 
of outputs 
toward me-
dian styles or 
perspectives.

AI-assisted 
essays sound 
stylistically 
similar.

Loss of 
cultural 
diversity; 
flattening of 
originality.

Enforce 
output diver-
sity budgets; 
promote 
pluralistic 
sampling.

O – Offload-
ing (Deskill-
ing)

Reliance on 
AI reduces 
human 
practice of 
cognitive 
skills.

Students 
rely on AI to 
draft, weak-
ening their 
argumenta-
tion ability.

Erosion 
of base-
line skills; 
vulnerability 
during AI 
failures.

“AI-off drills” 
in education 
and critical 
professions.

R – Re-
source Ex-
ternalities

Hidden en-
vironmental 
costs beyond 
carbon.

Water use for 
data centre 
cooling; 
power-grid 
stress.

Environmen-
tal strain, 
especially in 
water-scarce 
regions.

Standardised 
per-query 
disclosures 
(RTE labels).

I – Infor-
mation 
Integrity

Models 
output fluent 
but mislead-
ing content 
without 
uncertainty.

LLM 
fabricates 
citations 
confidently.

Epistemic 
collapse; ero-
sion of trust 
in knowledge 
systems.

Calibrated 
uncertainty 
by default; 
citation 
verification 
tools.

Z – 
Zoomed-in 
Feedback 
Loops

Recursive 
training on 
AI outputs 
narrows 
diversity and 
accuracy.

Models 
trained on 
synthetic 
data collapse 
in perfor-
mance.

Cultural and 
epistemic 
narrowing; 
degraded AI 
reliability.

Curated 
training data; 
monitoring 
“synthetic 
contamina-
tion.”

O – Organ-
isational 
Memory 
Loss

Tacit 
knowledge 
migrates into 
AI prompts 
or vendor 
systems.

Firms are 
embedding 
SOPs into 
prompt 
libraries.

Fragile 
institutional 
memory; 
vendor 
lock-in.

Hybrid 
storage of or-
ganisational 
knowledge; 
resilience 
audits.

N – Norma-
tive Drift

AI defaults 
and guard-
rails shape 
cultural/eth-
ical norms 
implicitly.

Model 
refusal styles 
become the 
de facto 
politeness 
standard.

Silent 
adoption of 
corporate 
norms with-
out debate.

Transpar-
ency about 
normative 
choices; 
participatory 
design.

Note. Table 1 summarises the HORIZON taxonomy of “invisible 
costs” in generative AI, offering concise definitions, illustrative 
examples, key risks, and potential mitigation strategies. The 
taxonomy highlights how technical defaults and systemic 
properties of AI models can exert hidden but significant cultural, 
environmental, and organisational effects.

4. Minimal-Effort Measures: Making the Invisible Visible

Scholars have emphasised that evaluation frameworks for artificial 
intelligence (AI) too often privilege accuracy while neglecting 
broader ethical, epistemic, and ecological dimensions (Ge et al., 
2010; Singh et al., 2014). In higher education, this narrow focus 
obscures fairness, accountability, transparency, and ethics (FATE), 
which shape how AI systems intersect with social and cognitive 
processes (Memarian and Doleck, 2023). Sustainability research 
likewise highlights the absence of standardised, transparent metrics 
for energy, water, and carbon disclosure, hindering accountability 
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and comparability (Adelakun et al., 2024). Across domains from 
hallucination detection in radiology and business education (Dang 
and Nguyen, 2025; Hardy et al., 2024) to recommender system 
diversity (Ge et al., 2010), a common theme emerges: invisible 
costs must be rendered visible through simple, tractable measures.

We therefore propose four conceptual metrics, DAO, CDQ, EIS, 
and RTE, that distil these insights into minimal-effort heuristics for 
AI audits. DAO (Diversity of AI Outputs) operationalises concerns 
about homogenization and lack of serendipity in generative AI (Ge 
et al., 2010). CDQ (Cognitive Dependence Quotient) foregrounds 
automation bias and the risk of over-reliance, echoing findings 
that students often fail to detect AI hallucinations (Dang and 
Nguyen, 2024). EIS (Epistemic Integrity Score) responds to 
epistemic fragility documented in medical AI and education, where 
unverifiable or overconfident outputs erode trust (Hardy et al., 
2024; Thomas et al., 2024). Finally, RTE (Resource Transparency 
Equivalent) adapts sustainability reporting practices, offering 
standardized disclosure of energy, water, and carbon per query 
(Adelakun et al., 2024; Basereh et al., 2021).

Table 2 summarizes these conceptual metrics, illustrating how 
they translate abstract ethical concerns into actionable indicators.

Table 2. Conceptual Metrics for Invisible Costs
Metric What It Measures Example Application

DAO (Di-
versity of AI 
Outputs)

Lexical/semantic 
dispersion across 
multiple gener-
ations of same 
prompt.

Running 10 
completions for 
one prompt, 
measuring 
variety.

Detecting 
homogenization; 
setting “diversity 
budgets.”

CDQ (Cogni-
tive Depend-
ence Quotient)

Ratio of task steps 
done by AI vs 
human.

Student essay 
outline: 80% AI, 
20% human.

Monitoring 
deskilling risk; 
thresholds for 
safety-critical 
domains.

EIS (Epistem-
ic Integrity 
Score)

Proportion of 
outputs that 
express calibrat-
ed uncertainty 
& cite verifiable 
evidence.

10 fact queries 
→ only 3 include 
source + un-
certainty → EIS 
= 0.3.

Tracking epis-
temic trust-
worthiness of 
outputs.

RTE (Resource 
Transparency 
Equivalent)

Standardised 
disclosure of 
per-query energy, 
carbon, and water.

1,000 prompts → 
12 kWh, 50 litres 
of water.

Sustainability 
reporting; con-
sumer awareness.

5. Case Vignettes

5.1 Education: Homogenised Writing

Teachers increasingly report that student essays shaped by AI tools 
exhibit striking similarities in phrasing, argumentative structure, 
and rhetorical cadence, even when plagiarism detection software 
does not flag them. This phenomenon signals a shift from overt 
academic dishonesty to a subtler homogenization of discourse. 
While AI can scaffold grammar, coherence, and surface polish, 
its generative templates risk narrowing the expressive range of 
student writing (Pryma et al., 2025).

Empirical evidence suggests that this homogenization effect 
is already observable in practice. In a controlled experimental 
study conducted by researchers at Cornell University, participants 
from different cultural backgrounds (including U.S. and Indian 
students) were asked to write short essays with and without 
AI writing assistance. The study found that AI-assisted texts 
became significantly more like one another in terms of lexical 

choice, sentence structure, and rhetorical framing, thereby 
reducing culturally distinct and stylistically idiosyncratic features 
typically present in unaided writing. The authors conclude that 
AI suggestions systematically push users toward more generic, 
standardised forms of expression, demonstrating that convergence 
in writing style is not merely a theoretical concern but a measurable 
outcome of AI-mediated composition (Stanley, 2025).

The homogenization effect is not merely stylistic but epistemic. 
Studies show that AI writing assistants encourage formulaic 
arrangements and “robotic” sentence structures, often reducing 
opportunities for rhetorical experimentation and independent 
argument construction (Bašić et al., 2023). School and university 
educators worry that such reliance produces text that is 
grammatically correct yet cognitively thin, with diminished critical 
reasoning and originality (Akyıldız, 2024; Malik et al., 2023).

Survey-based research confirms that students themselves are 
ambivalent: they value AI’s ability to improve fluency, reduce 
errors, and provide efficient scaffolding, yet many also fear it 
stifles their creative development and voice (Marrone et al., 2022; 
Sharma, 2025). This aligns with findings that younger generations 
rely more heavily on generative AI than teachers and parents, 
raising concerns about long-term dependence (Sharma et al., 
2025).

Educators thus face a paradox. On one hand, AI can act as a 
relational artefact that supports collaboration and expands student 
exploration (Lim et al., 2023). On the other hand, unchecked 
use risks routinization, where students substitute authentic 
experimentation with AI-optimised phrasing. The result is a 
narrowing of the discursive field: writing that passes as “authentic” 
but lacks the idiosyncratic markers of human experimentation 
and voice (Avila-Chauvet and Mejía, 2023; Khalil and Er, 2023).

The case of homogenised writing underscores the need for 
pedagogical strategies that position AI as a supplement rather than 
a surrogate. As several studies emphasise, balanced integration 
requires teacher mediation, explicit creativity-focused tasks, 
and opportunities for students to deliberately diverge from AI-
suggested patterns (Akyıldız, 2024; Lim et al., 2023). Without 
such measures, the promise of AI in education risks devolving 
into a culture of standardised expression, were efficiency eclipses 
originality.

5.2 Organisations: Prompt-Dependent Workflows

A growing number of organisations are migrating creative and 
operational tasks into AI-mediated environments, often organised 
around prompt libraries. While this shift increases efficiency and 
standardises outputs, it also risks restructuring organisational 
learning in ways that erode collective memory and tacit knowledge. 
Prompt engineering - whether through zero-shot, few-shot, or 
chain-of-thought techniques - allows firms to leverage pre-trained 
models without retraining (Gu et al., 2023; Sahoo et al., 2024). 
Yet this very reliance on externalised prompts transforms expertise 
from a situated, experiential practice into a procedural interaction 
with templates (Sikha et al., 2023).

This dynamic is not merely speculative, as prompt libraries 
are already being implemented in real organisational settings 
to structure and standardise AI-mediated work. Enterprise 
documentation from Microsoft describes prompt libraries as 
shared repositories of reusable prompts designed to accelerate task 
completion and ensure consistency across teams (Phil-cmd, 2024). 
Practitioner-oriented guidance likewise encourages organisations 
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to centralise prompt development as part of formal governance 
structures to scale generative AI use effi  ciently (Themefi sher, 
2024). At the same time, empirical workplace research indicates 
a cognitive trade-off  associated with such reliance. Qualitative 
interview-based research on human AI augmentation reports that 
employees express concerns about dependency and deskilling 
when AI systems increasingly mediate problem-solving activities, 
reducing opportunities for skill enactment and experiential 
learning. Complementary research on AI use in work contexts 
similarly highlights that automation and augmentation can lead to 
deskilling depending on how tasks are structured and routinised 
(Charpied, 2025).

Taken together, these sources provide verifi able evidence 
that organisations are actively structuring workfl ows around 
reusable prompts and that such arrangements can plausibly 
externalise reasoning processes, raising risks for the durability 
of organisational knowledge and skill development.

The case of a technology startup that migrated its design 
brainstorming into prompt-guided AI illustrates this risk vividly. 
Within months, employees ceased to learn the rationales 
underlying design choices; organisational memory was 
eff ectively outsourced to the model. This aligns with broader 
evidence that AI-based augmentation often produces deskilling, 
as workers lose opportunities for experimentation, overview, and 
refl ective judgment (Crowston and Bolici, 2025; Huseynova, 
2024). Although human AI augmentation is typically framed as 
complementary, blurred boundaries between augmentation and 
substitution frequently mean that workers merely input prompts 
and evaluate outputs, rather than engaging in deeper knowledge 
creation (Huseynova, 2024).

From a knowledge management perspective, the outsourcing of 
decision rationales to AI threatens the durability of organisational 
memory. Scholars highlight that while emerging technologies 
like AI can automate tacit knowledge capture, they also risk bias, 
over-reliance, and the erosion of unarticulated know-how (Nonato 
and Perez, 2025; Storey, 2025).

Traditional knowledge management strategies, personalisation 
(relying on human expertise) and codifi cation (relying on stored 
databases) are both destabilised when AI itself becomes the 
locus of “hidden” organisational knowledge (Fteimi and Hopf, 
2021). Without deliberate governance, fi rms risk creating brittle 
knowledge ecosystems, in which the interpretive capacities of 
employees atrophy while design rationales remain locked in 
opaque prompt–output cycles.

Nevertheless, research also emphasises that outcomes are not 
uniform: AI adoption in knowledge work can simultaneously 
produce new tasks, new roles, and skill requirements, especially 
when paired with participatory change management (von 
Richthofen et al., 2022). The organisational challenge, then, is 
not whether to use AI, but how to embed it without allowing 
prompt dependence to substitute for organisational reasoning. 
Building resilience requires designing workfl ows that deliberately 
expose employees to the “why” behind design choices, ensuring 
that organisational memory remains distributed among people, 
not just prompts.

6. Governance and Design Playbook

The transition from conceptual diagnosis to institutional response 
requires a clear linkage between invisible costs, their measurement, 
and possible interventions. Section 4 outlined minimal-eff ort 

metrics such as the Diversity of AI Outputs (DAO) and the 
Epistemic Integrity Score (EIS) as heuristics for rendering latent 
risks visible. Governance design must then translate these signals 
into actionable practices. Figure 3 depicts this fl ow: invisible costs 
are operationalised through metrics, which in turn provide entry 
points for governance interventions. By structuring the relationship 
in this way, the diagram underscores that interventions are not 
abstract aspirations but concrete responses to measurable patterns.

 

 Figure 3: Governance fl ow - from Invisible cost to Interventions

The logic of diversity budgets, for example, follows directly 
from DAO: if the diversity metric declines, governance should 
impose quotas that encourage models to sample more widely, 
thereby sustaining a long-tail distribution of cultural expression 
(Shur-Ofry et al., 2024; Wan and Kalman, 2025). Similarly, a 
low EIS score calls for interventions such as “uncertainty by 
default,” which aligns AI systems with scientifi c norms of hedging 
and tentativeness rather than overstated certainty (Ho and Caals, 
2024; Wihbey, 2024).

To operationalise the playbook, consider two illustrative cases. 
In education, a persistently low Diversity of AI Outputs (DAO) 
score in student writing tools would trigger assignment redesign, 
such as requiring students to generate multiple AI-assisted drafts 
using diff erent prompts or models and to explicitly diverge from 
AI outputs through refl ection and revision. At the institutional 
level, DAO thresholds could be enforced by rotating approved AI 
models or limiting repeated reuse of identical prompt templates 
across courses. In organisational settings, a low Epistemic Integrity 
Score (EIS) in decision support systems would prompt design 
interventions such as uncertainty by default, requiring AI outputs 
to include confi dence ranges, alternative explanations, or explicit 
unknowns. Firms could further reinforce EIS governance through 
periodic AI off  workfl ows in which teams justify decisions without 
AI assistance, ensuring that reasoning remains distributed among 
employees rather than embedded solely in model outputs.

This governance fl ow reframes invisible risks as tractable levers 
of intervention. Rather than treating homogenization, epistemic 
fragility, or deskilling as diff use concerns, the framework connects 
each to a corresponding design doctrine. In doing so, it embeds 
accountability at the level of system design: diversity quotas 
as correctives to monoculture, epistemic hedging as insurance 
against lock-in, periodic “AI-off ” practices as safeguards against 
deskilling, and transparency labels as accountability mechanisms 
for ecological costs (Agha et al., 2025; Campo-Ruiz, 2025).

What emerges is a playbook that treats governance as an iterative 
feedback loop. Metrics track the health of epistemic and cultural 
ecosystems, while interventions are triggered when thresholds are 
crossed. The diagram thus represents more than a static mapping: 
it signals a dynamic governance architecture, one capable of 
adapting as invisible costs surface and as interventions reshape 
the terrain.

7. Conclusion
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This paper has advanced the argument that generative AI should 
be understood not merely as a tool or agent but as an ecology, 
an environment that reshapes the very conditions of cognition, 
culture, and epistemic trust. This ecological framing exposes 
risks that are neither captured by benchmark performance 
nor reducible to carbon costs. They are instead slow-moving, 
systemic transformations: the homogenization of discourse, the 
erosion of skills through over-reliance, the depletion of hidden 
ecological resources, and the destabilisation of information 
integrity, recursive feedback loops, organisational memory loss, 
and normative drift. Taken together, these invisible costs suggest 
that the most consequential impact of AI may not be technical 
error, but ecological imbalance.

This analysis does not deny the substantial benefits of generative 
AI. Across education and organisational contexts, AI systems 
demonstrably improve efficiency, reduce cognitive load on routine 
tasks, and expand access to expertise by supporting users in 
drafting, summarising, coding, and problem-solving. In many 
cases, these systems enable individuals and institutions to perform 
tasks that would otherwise be prohibitively time-consuming or 
inaccessible. The concern addressed in this paper is therefore not 
whether AI should be used, but how its benefits can be realised 
without allowing efficiency gains to obscure or amplify longer-
term epistemic, cultural, and organisational costs.

By foregrounding invisible costs, this work makes two 
contributions. First, it reframes existing debates on AI evaluation, 
which remain dominated by visible metrics of performance, 
fairness, and emissions (Luccioni et al., 2024; Eriksson et al., 
2025). While such metrics are necessary, they are insufficient to 
account for AI’s role in shaping human cognitive infrastructures. 
The ecological perspective insists that intelligence is sustained not 
by isolated algorithms but by interdependent systems that draw 
resilience from diversity, redundancy, and contextual adaptation 
(Hutchins, 2010; Tribble and Sutton, 2011). Second, the paper 
operationalises this insight through the HORIZON taxonomy 
and the proposed indicators DAO, CDQ, EIS, and RTE. These 
minimal-effort measures translate abstract risks into actionable 
metrics, rendering latent costs visible and therefore governable.

The implications extend across domains. In education, over-
reliance on generative systems risks narrowing expression and 
critical reasoning, demanding pedagogical interventions that 
cultivate divergence rather than conformity (Agarwal et al., 2025; 
Pryma et al., 2025). In organisations, prompt-dependent workflows 
may erode tacit expertise, raising questions about how to sustain 
institutional memory when knowledge is increasingly externalised 
into vendor-controlled infrastructures (Jarrahi et al., 2023; 
Falckenthal et al., 2025). At the societal level, recursive training 
on AI-generated content risks epistemic collapse, as synthetic 
data feeds back into future models, progressively narrowing the 
representational horizon (Borji, 2024; Gerstgrasser et al., 2024). 
These trajectories highlight that the stakes of AI adoption are 
not simply efficiency or productivity but the health of cognitive 
ecologies that underpin democratic deliberation, cultural vitality, 
and organisational resilience.

Yet these risks also point to constructive pathways. If 
homogenization is a stressor, then deliberate diversity budgets 
in generative outputs can sustain pluralism. If epistemic integrity 
is fragile, then uncertainty-by-default and verifiable citation 
protocols can align machine discourse with scientific norms 
(Ho and Caals, 2024; Krishnan et al., 2024). If organizational 
knowledge risks decontextualization, then hybrid approaches 
that pair AI archives with embodied apprenticeship can preserve 

tacit expertise (Nonaka and Takeuchi, 2021). And if resource 
externalities are obscured by carbon tunnel vision, then RTE-style 
disclosures can surface the full ecological footprint of AI, enabling 
informed governance (Adelakun et al., 2024; Berthelot et al., 
2024). These interventions are modest in design but systemic in 
effect: they recalibrate incentives away from narrow optimization 
toward stewardship of the conditions under which intelligence 
thrives.

The limitations of this study must also be acknowledged. The 
HORIZON taxonomy is necessarily conceptual and exploratory; 
further empirical work is needed to test its categories, refine 
its measures, and assess its applicability across cultural and 
institutional contexts. The proposed indicators are heuristic rather 
than standardized metrics, requiring interdisciplinary collaboration 
to integrate them into regulatory frameworks and organizational 
practice. Moreover, while the ecological metaphor provides 
analytical leverage, it should not obscure the material and political 
dimensions of AI infrastructures, which are shaped by corporate 
interests, state power, and global inequities (Chester and Allenby, 
2023; Scheuerman et al., 2021).

Nonetheless, the ecological perspective advanced here is intended 
as a provocation to reorient the discourse. The central question is 
not whether AI systems outperform benchmarks, but whether they 
enrich or erode the ecologies of human thought. To frame AI as 
ecology is to recognize that invisible costs are not marginal side 
effects but central dynamics, shaping what kinds of knowledge 
endure, whose voices are amplified, and what forms of reasoning 
are considered legitimate. Future research must therefore move 
beyond accuracy and fairness audits toward ecological audits that 
assess the resilience of cultural, cognitive, and epistemic systems 
in the presence of pervasive generative models.

If the twentieth century was defined by the engineering of technical 
systems, the twenty-first will be defined by the stewardship of 
cognitive ecologies. Generative AI will continue to proliferate; 
the task is to ensure that its integration strengthens rather than 
corrodes the infrastructures of thought. That task requires not 
only better models but also better metaphors, better measures, 
and above all, better care for the habitats of human cognition.
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