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Abstract

Recent debates on Generative Artificial Intelligence (GenAl) have centred on quantifiable concerns such as computational cost, carbon
emissions, and benchmark performance. Yet the most consequential risks may be those that are less visible: the gradual reshaping of
human cognition, creativity, and epistemic trust. This paper introduces the concept of Al as cognitive ecology, situating generative systems
not merely as tools or agents, but as a pervasive environment in which thought now unfolds. Building on this paradigm, we propose
the HORIZON taxonomy of invisible costs: Homogenization, Offloading (deskilling), Resource externalities, Information integrity,
Zoomed-in feedback loops, Organizational memory loss, and Normative drift. We illustrate each dimension through conceptual analysis
and lightweight audits, and propose new indicators including DAO (Diversity of Al Outputs), CDQ (Cognitive Dependence Quotient),
EIS (Epistemic Integrity Score), and RTE (Resource Transparency Equivalent). We argue that sustaining Al innovation requires not only
technical and environmental monitoring, but active stewardship of cognitive ecologies.

1. Introduction

The landscape of modern technology is undergoing a profound
transformation with the rapid ascent of Generative Artificial
Intelligence (GenAl). Defined by their capacity to produce novel
content ranging from text, images, and audio to software code,
video, and simulations based on extensive training datasets, GenAl
models have quickly permeated various sectors, captivating
widespread attention and promising to revolutionise business
and everyday life (Rana ef al., 2024). Predictions from leading
industry analysts, such as Gartner, anticipate that over 80% of
enterprises will have integrated GenAI APIs or deployed GenAl-
enabled applications by 2026, underscoring its swift adoption
and perceived transformative power (Rana et al., 2024). This

pervasive integration is driven by GenAl’s immense potential
to enhance organisational effectiveness, streamline operations,
and provide a significant competitive edge (Wamba et al., 2023).
For instance, GenAl is already being leveraged across diverse
business functions, including marketing, project management,
data analysis, customer relationship management, content
creation, human resources, employee training, and coding. In
software engineering, GenAl tools are envisioned as indispensable
allies throughout the development lifecycle from ideation and
architectural design to code generation, testing, deployment,
and maintenance, with projections suggesting a 20-45% surge
in productivity by automating tasks such as drafting code and
performing root-cause analyses (Russo, 2024). The immediate
popularity of models such as ChatGPT, following its public
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release in November 2022, highlights a demonstrated human-like
competence in diverse areas, further accelerating its integration
into critical organisational processes (Rana ef al., 2024). This
widespread, fast-paced adoption positions GenAl not merely as
an incremental improvement but as a disruptive innovation poised
to fundamentally reshape industries (Russo, 2024).

The rapid proliferation and increasing societal reliance on Al
systems have, rightly, spurred extensive ethical and societal
debates. Current discourse within Al ethics largely centres on
tangible, quantifiable costs and concerns, predominantly revolving
around three interconnected pillars: accuracy and performance,
bias and fairness, and environmental and resource consumption.

Accuracy and performance are paramount concerns, as Al
models are increasingly deployed in high-stakes domains such
as healthcare, finance, and criminal justice, where precision is
critical (Nathim et al., 2024). Ensuring that Al systems deliver
optimised and timely outcomes, as expected by users, is a key
ethical consideration (Rana ez al., 2024). However, research
continually highlights the challenges in guaranteeing accuracy,
particularly given that GenAl models, relying on pre-trained data
and algorithms, can generate imprecise results due to inherent
flaws in their training data or underlying logic (Balasubramaniam
et al., 2023). The functional integrity of Al-generated code, for
instance, remains a fundamental concern in software engineering,
with varying degrees of success reported depending on task
complexity and programming language (Russo, 2024).

Bias and fairness represent a complex and multifaceted ethical
challenge, recognised as critical for establishing trust and ensuring
equitable treatment across diverse populations (Nathim ez a/., 2024;
Russo, 2024). Biased Al systems can inadvertently perpetuate and
even exacerbate existing societal discrimination, stereotyping,
and social inequities (Modi, 2023). Sources of bias are deeply
embedded throughout the Al lifecycle, from data collection and
human annotation to algorithmic design itself (Nathim et al.,
2024). While various bias mitigation techniques, such as data
pre-treatment, algorithmic adjustments, and adversarial testing,
have been proposed, they often involve trade-offs with model
performance and accuracy, complicating efforts to balance fairness
and efficacy. Furthermore, the absence of universal methods
for assessing fairness and a consensus on appropriate metrics
underscores the ongoing difficulty in systematically identifying
and mitigating bias, necessitating accessible and easily integratable
tools and frameworks for practitioners.

Parallel to these operational and social concerns, the environmental
and resource costs of Al, particularly GenAl, are emerging as a
critical, albeit often overlooked, ethical dimension. GenAl models
are distinctly resource-intensive, contributing significantly to
carbon dioxide emissions and demanding massive amounts of
water and land for their operation (Kneese and Young, 2024). The
overall energy consumption of the Information and Communication
Technologies (ICT) sector, which includes Al is rapidly escalating,
with global data centre electricity usage increasing by 20-40%
annually and straining existing renewable energy infrastructures
(Luccioni et al., 2024; Inie et al., 2025b). Crucially, the inference
(deployment) phase of Machine Learning (ML) models, often
overlooked in favour of training costs, can account for a substantial
portion (80-90%) of total cloud computing demand and contributes
as much or more to environmental impact (Luccioni ef al., 2024).
Multi-purpose, generative architectures, such as GPT models,
are orders of magnitude more environmentally costly than task-
specific systems, yet a lack of transparency from major model

providers regarding training and hosting data complicates accurate
assessment and accountability (Inie ef al., 2025b). This calls for
the integration of environmental factors, including downstream
impacts on communities and ecosystems, directly into the design
space of Al, advocating for a holistic approach to sustainable Al
development (Kneese and Young, 2024).

While these discussions on accuracy, bias, and environmental
impact are vital, they primarily address the visible or immediately
quantifiable aspects of Al’s societal footprint. This paper argues
that a crucial dimension of AI’s impact remains underexplored: the
invisible cognitive, cultural, and epistemic costs associated with
the widespread adoption and integration of generative models.
This gap arises from a prevailing tendency in Al development
and evaluation to valorise influential benchmarks as objective
markers of progress, despite their inherent limitations in capturing
complex, real-world capabilities and broader societal implications
(Raji et al., 2021; Eriksson et al., 2025).

The existing critique of AI benchmarks, though extensive, still
struggles to fully articulate these invisible costs. Researchers
have demonstrated that many benchmarks suffer from construct
validity issues, often failing to measure what they claim, especially
when aspiring to assess “general” or “universal” capabilities (Raji
et al.,2021). This problematic framing leads to misguidance in
task design, underreporting of inherent biases, and the potential
misuse of models based on false performance presentations.
The historical Common Task Framework (CTF), designed for
tightly-scoped, practically-oriented tasks, has been inappropriately
extended to abstract “performance,” promoting “glamour and
deceit” over meaningful progress (Raji et al., 2021). These
evaluations are often based on “samples of convenience” rather
than systematically chosen, theoretically sound tasks. This narrow
focus extends to the modalities evaluated, with a vast majority of
benchmarks concentrating on text-based Al, leaving other crucial
modalities such as audio, images, and multimodal systems largely
unexamined (Gomez et al., 2024). This also results in a lack of
diversity, with many datasets being Anglo-centric and under-
representing minorities, raising concerns about the inclusion of
multiple perspectives on complex ethical topics (Rauh et al.,
2024).

Furthermore, AI benchmarking practices are deeply political,
performative, and generative, actively shaping how Al models
are trained and applied rather than passively measuring their
capabilities (Orr and Kang, 2024). They operate as “normative
instruments that perpetuate particular epistemological
perspectives”, often prioritising efficiency over care, universality
over contextuality, and impartiality over positionality (Scheuerman
et al., 2021). The economic, competitive, and commercial roots
of capability-oriented benchmarks embed them within corporate
marketing strategies, fuelling Al hype and attracting investors
(Eriksson et al., 2025). This creates an incentive mismatch,
where the pursuit of state-of-the-art (SOTA) performance often
overshadows high-quality evaluations, leading to “SOTA-chasing”
and a “winner’s curse” at the expense of genuine insight and
explanation (Church and Hestness, 2019). This competitive
culture, often likened to a “sport,” reinforces path dependencies
in Al research, favouring certain methodologies and stifling others
that do not align with dominant benchmark logic (Eriksson et al.,
2025). The gaming of benchmarks is another critical concern,
with evidence of data contamination, “sandbagging” (models
strategically underperforming), and cherry-picking results due
to a lack of transparency and reproducibility resources (Eriksson
et al., 2025). The dubious community vetting process, where
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benchmarks gain influence through citation popularity rather than
inherent suitability, further compounds these issues. This leads to
“peer-washing,” where problematic datasets maintain authority
despite their shortcomings (Schlangen, 2020). The rapid pace of
Al development also contributes, as benchmarks quickly become
saturated and outdated, unable to effectively evaluate increasingly
complex models or keep pace with continuous model iterations
and new capabilities (McIntosh ez a/., 2025). Finally, the inherent
complexity of Al and the presence of unknown unknowns limit
current benchmarking capabilities. Human knowledge constraints
prevent a full assessment of emerging Al capabilities that may
surpass conventional understanding, potentially leading to latent
vulnerabilities and unforeseen risks (Eriksson ez al., 2025). Efforts
to fine-tune Al models for safety, for instance, have been shown
to degrade performance in other areas or introduce entirely new
security risks. These fundamental fragilities in quantitative Al
evaluation highlight that current benchmarking is ill-suited to
single-handedly provide the safety and capability assurances
demanded by policymakers (van der Weij et al., 2024).

This paper posits that these acknowledged shortcomings in Al
evaluation, from construct validity failures to competitive dynamics
and unknown vulnerabilities, are not merely technical glitches but
symptoms of a deeper neglect: a failure to account for Al’s role
in a cognitive ecology. We define Al as a cognitive ecology as an
interconnected system where human and artificial intelligences
interact, adapt, and co-evolve, influencing each other’s cognitive
processes, cultural norms, and knowledge structures in profound,
often invisible ways. The current evaluation paradigm, fixated on
isolated performance metrics and tangible outputs, fails to capture
how GenAlI models subtly reshape human cognition (e.g., through
reliance on Al for problem-solving), infuse cultural biases (e.g.,
through reinforcement of implicit assumptions in datasets), and
redefine epistemic authority (e.g., by influencing what constitutes
“truth” or “expertise” in a data-driven world). Overlooking
these invisible costs of the transformations in human thinking,
cultural values, and the very nature of knowledge production and
validation poses a significant risk to the responsible development
and integration of Al into society. While some initial qualitative
insights touch upon ethical and legal considerations, including bias
and explainability concerns from developers themselves (Russo,
2024), these remain peripheral to the primary focus on adoption
drivers such as compatibility, etc. This paper aims to foreground
these subtle yet pervasive impacts.

Therefore, this paper seeks to reveal these invisible cognitive,
cultural, and epistemic costs of generative models by proposing
a comprehensive framework for their systematic analysis. By
viewing Al as a cognitive ecology, we shift the focus from merely
assessing model performance to understanding the dynamic
interplay between Al systems and the broader human and
informational environment. This approach allows us to unpack the
subtle ways GenAl alters human decision-making, shapes societal
norms, and reconfigures knowledge landscapes. Our contribution
will be structured around a novel HORIZON taxonomy, which
systematically categorises these heretofore unacknowledged costs,
providing a critical lens for future research, design, and policy.
We argue that a holistic understanding of GenAI’s true impact
necessitates moving beyond quantifiable outputs to embrace an
ecological perspective that accounts for its transformative, often
hidden, influence on human thought, culture, and knowledge.

The remainder of this paper is structured as follows: Section 2
provides a comprehensive literature review outlining existing
approaches to Al evaluation and their limitations, further
substantiating the identified gap. Section 3 introduces our

theoretical framework, “Al as Cognitive Ecology,” detailing
its core tenets. Section 4 presents the HORIZON taxonomy,
operationalising the cognitive, cultural, and epistemic dimensions
of Al’s invisible costs. Section 5 discusses the implications of this
ecological perspective for ethical Al development, responsible
innovation, and policy formulation. Finally, Section 6 offers
concluding remarks and outlines future research directions.

2. Al as Cognitive Ecology: A Paradigm Shift
2.1 From Tools to Ecologies

The rapid integration of artificial intelligence (Al) into diverse
societal domains has prompted a reliance on metaphors to
conceptualise its function and impact. Predominantly, Al is framed
as a tool, agent, or assistant (Chan ez a/., 2025; Kandasamy, 2025).
This perspective views Al as an artefact to be wielded by human
users, designed to achieve specific goals or automate predefined
tasks (Stryker, 2024). For instance, within environmental computer
science, Al is widely perceived as a set of methods, a helpful tool
such as GIS, Statistics or Data Visualisation (Sinwell ez al., 2021).
Similarly, the concept of Agentic Al emphasises LLM-driven
entities that interact with tools, environments, and other agents
to accomplish tasks with a degree of autonomy (Kandasamy,
2025). Even the fundamental definition of software agents posits
them as autonomous, goal-directed computational entities capable
of perceiving and acting upon their environment. This tool-use
pattern is a recognised design approach in Agentic Al systems,
defining a tool as a piece of code that the Agent uses to observe or
act towards achieving its goal. The Agents and Artefacts (A&A)
approach further models’ artefacts as first-class abstractions for
modelling and designing MAS working environments, drawing
inspiration from Activity Theory (Omicini ef al., 2009). This
common understanding suggests Al, whether as a simple utility
or a more sophisticated agent, primarily serves as a means to an
end, an instrument for human or system objectives (Sinwell e?
al., 2021).

Despite their intuitive appeal and widespread adoption, these
metaphors fall short of capturing the transformative, systemic
impact of advanced Al models on human cognition and societal
structures. The tool metaphor, in particular, implies a passive
instrument entirely subject to external control, obscuring AI’s
increasingly active and even generative role (Markolf'ef al., 2021).
While artefacts, as discussed in the A& A meta-model, are indeed
explicitly designed to provide a certain function (Omicini et al.,
2009), they also possess both an enabling and a constraining
function and shape the way human beings interact with reality
(Omicini et al., 2009). This suggests a deeper influence than
mere utility. Furthermore, these mediating tools embody social
practices, reflect historical experiences, and influence not only the
external behaviour, but also the mental functioning of individuals
using them (Omicini ez al., 2009). When Al is seen merely as a
tool in fields such as Environmental Computer Science, it can lead
researchers to focus narrowly on getting a good prediction from
a very specific dataset, rather than developing general applicable
models that align with the broader aims of pure Al research
(Sinwell et al., 2021). This implies that the metaphor itself can
inadvertently limit the scope and ambition of Al’s application.

The metaphors of learning and training for Al, while pervasive,
similarly risk misleading practitioners and the public by implying
human-like cognitive processes that are not necessarily present
(Murray-Rust et al., 2022). As Murray-Rust et al. (2022) argue,
these impressive surface-level performances do not necessarily
correspond with other abilities that humans have, such as
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generalisation and reasoning (Murray-Rust e al., 2022). The
black box metaphor, often used to describe the opacity of Al
systems, further compounds this issue by fostering a sense of
powerlessness and diverting attention from understanding the
underlying mechanisms or accountability. Similarly, the term
bias in Al, while seemingly analogous to human prejudice, can
conceal its multiple technical meanings and the pernicious idea
that talking about bias raises the possibility of an unbiased model,
thereby sidestepping the crucial understanding that biases are
always relative to something, and that something needs articulation
(Hildebrandt, 2021). Fundamentally, these established metaphors,
while simplifying and connecting to existing knowledge, illuminate
and hide, centring particular ideas, marginalising others, and
shaping fields of practice (Murray-Rust et al., 2022). The very
idea that Al systems may lead to “implicitly or explicitly releasing
control to algorithms (Markolf ez al., 2021) points to a profound
shift in agency that a simple tool cannot encapsulate. Even the
development of control planes to manage tool orchestration in
Agentic Al systems (Kandasamy, 2025) highlights the growing
complexity inherent in integrating and managing these so-called
“tools.”

While the agent or assistant metaphors offer a more dynamic view
of Al, emphasising their autonomy, goal-seeking behaviour, and
interaction capabilities (Chan et al., 2025; Kandasamy, 2025),
they still tend to centre the Al as a discrete entity rather than
recognising its pervasive influence on the underlying cognitive and
social environment. An Al agent, as defined by Chan ez al. (2025),
directly interacts with the world and adapts to underspecified
tasks, going beyond traditional software. However, even these
advanced agents operate within a complex agent infrastructure,
technical systems and shared protocols external to agents that
are designed to mediate and influence their interactions with
and impacts on their environments” (Chan et al., 2025). This
external infrastructure, encompassing elements like identity
binding, certification, agent IDs, channels, oversight layers, and
communication protocols, implies that AI’s influence extends
far beyond its individual actions. Moreover, the emergence of
automated thinking, as conceptualised by Sellar and Gulson
(2021), challenges the notion of Al as merely an agent executing
pre-programmed rules. This nonconscious cognition operates
across and within the full spectrum of cognitive agents: humans,
animals, and technical devices (Sellar and Gulson, 2021), and
can even make inferences about the most optimal decision in
a given situation while remaining ignorant of a larger set of
indeterminate possibilities”. This hints at a more active, and at
times unpredictable, reshaping of cognitive processes than the
agent metaphor implies. The recognition that Al’s capabilities may
augment and replace people (Markolf ez al., 2021) and contribute
to implicitly or explicitly releasing control to algorithms further
underscores its transformative potential, extending beyond the
boundaries of an individual agent.

To adequately grapple with these profound shifts, we advocate for
a paradigm shift in how Al is conceptualised: as an integral part of
a cognitive ecology or cognitive infrastructure that fundamentally
reshapes the conditions of thought, decision-making, and societal
organisation. This ecological metaphor posits Al not as a mere
instrument, but as a pervasive force that alters the environment
in which human cognition operates, much like the advent of
language, literacy, or new media systems (Omicini et al., 2009;
Sellar and Gulson, 2021). As Chester and Allenby argue, the rise
of novel digital and connected technologies signifies “not simply
the rise of cyber-physical systems as hybrid physical and digital
assets but, ultimately, the integration of legacy systems into a new

cognitive ecosystem (Chester and Allenby, 2023). This cognitive
ecosystem is characterised as an ecology of massive data flows,
artificial intelligence, institutional and intellectual structures, and
connected technologies, poised to alter how humans and artificial
intelligence understand and control our world. It is an emerging
and highly complex feature of an increasingly anthropogenic planet
that integrates functionalities from diverse sources, including
increasingly powerful Al tools such as generative Al to the rules,
regulations, venture capitalists, and social media systems that
co-evolve with the technologies. This view emphasises that Al
is not just affecting what we do, but how we think and perceive
the world, and indeed, “what the systems fundamentally are”.

This reframing positions Al as a constituent element of a planetary-
scale computation (Chester and Allenby, 2023), where algorithms
become embedded in a multi-layered “digital infrastructure space
that acts as a medium of information and an operating system
for shaping the city. This infrastructure space has a disposition
that emerges, in part, from the actions of algorithms, leading to
distributed, emergent forms of cognition that can have powerful
effects. Sellar and Gulson (2021), drawing on Parisi’s work,
define this as “automated thinking,” a form of nonconscious
cognition that syncopates with human thinking and inhabits
different temporalities, opening up temporal regimes in which
the costs of consciousness become more apparent and more
systemically exploitable. This emergent automation introduces
creative uncertainty, where algorithms can “reason through and
with uncertainty and engender their own form of knowing. The
implication is that Al, as cognitive infrastructure, is not just
performing tasks but actively contributing to the generation of
new knowledge, values, and decision-making processes, thereby
changing the possibilities for education policy and the governance
of school systems. This perspective acknowledges that control
efforts may need to focus on establishing relationships with Al that
recognise that cyber-technologies will be guiding us in ways that
we may not always fully understand (Markolf ez al., 2021). Thus,
the ecological metaphor prompts a shift from assessing individual
Al performance to understanding the broader transformation of
our “cognitive ecosystem”(Chester and Allenby, 2023).

2.2 Historical Cognitive Infrastructures

Human cognition has always been scaffolded by infrastructures
that extend and reshape mental capacities (Loh and Kanai,
2016). Language was the first and most foundational, enabling
the offloading of thought onto others’ minds and distributing
cognitive load through collaboration (Dror and Harnad, 2008;
Baker, 2009). This biological development not only expanded
communication but also rewired neural systems, making complex
everyday thought possible (Pandey ef al., 2023).

Writing and later the printing press externalized memory,
overcoming the fragility of oral transmission and facilitating
reflection, abstraction, and collective knowledge growth (Dror and
Harnad, 2008). These innovations generated a period of “cognitive
inflation,” while the printing press standardized and democratized
access to knowledge, embedding infrastructures into the cultural
and epistemic fabric of societies.

The Internet represents a more radical shift: a global “Cognitive
Commons” where cognizes, databases, and software agents
interoperate at speeds and scales inconceivable for individual
minds (Loh and Kanai, 2016). Unlike earlier infrastructures that
stored or transmitted knowledge, it actively generates information,
creating a qualitatively new dimension of cognitive offloading.
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This trajectory has been theorized through the Extended Mind
Thesis (EMT), which argues that cognition can extend beyond
the “skin and skull” into the environment (Pandey ez a/., 2023). A
notebook serving as external memory exemplifies such coupling
(Baker, 2009). Yet debate persists: while external tools enhance
cognition, they are not themselves cognizers. The prevailing view
holds cognition as “narrow” - biologically instantiated - while
acknowledging that tools can reconfigure cognitive performance
and mental states (Dror and Harnad, 2008).

The neuroscientific implications are evident in the rise of Digital
Natives. Growing up in hyperlinked, interactive environments
has fostered shallow processing styles, rapid attentional shifts,
and diminished deep reading, linked to changes in brain circuitry
for executive control and sustained focus (Loh and Kanai, 2016).
While digital offloading can strategically free resources, it also
risks attenuating contemplative skills, making technological
deprivation feel akin to cognitive impairment.

Thus, the historical arc from language to the Internet demonstrates
more than quantitative enhancement of performance. It reveals
qualitative transformations in cognition itself, reshaping how
humans process information, sustain attention, and even understand
their own minds.

2.3 Why Ecology?

Why adopt an ecological perspective on cognition and artificial
intelligence (AI)? Because cognition does not reside in isolated
brains but emerges from interdependent systems that link humans,
artefacts, environments, and cultural practices. An ecological lens
foregrounds interdependence, diversity, fragility, and resilience
qualities essential for understanding how intelligence, human or
artificial, is sustained. By situating Al within a cognitive ecology
rather than treating it as an autonomous tool or agent, we can
better diagnose risks that arise not from discrete errors but from
systemic imbalances such as homogenization, skill erosion, or
epistemic collapse.

(Hutchins, 2010) describes cognitive ecology as the study of
cognitive phenomena in context, where meaning-making processes
unfold through webs of mutual dependence among people,
environments, and material systems. This position challenges
the cognition as internal operation model of classical cognitivism,
which confined mind to the boundaries of skull and skin. Instead,
cognitive processes extend into sensorimotor engagements, social
interactions, and cultural artefacts. Bateson’s (1972) famous
parable of the blind man with a stick illustrates this point: cognition
cannot be bounded at the skin, since the stick, the ground, and the
sensory loops that run through them are integral to perception and
action. To excise any part of this ecology would be to render the
system inexplicable. Similarly, when Al systems become part of
human practices, they enter into feedback loops that are no less
constitutive of cognition than sticks, maps, or scripts.

(Tribble and Sutton, 2011) expand this framework by highlighting
how cognition spreads or smears across heterogeneous resources:
brains and bodies, tools and texts, institutions and environments.
No one dimension holds analytic primacy, since cognition is
always hybrid and distributed. A Shakespearean performance,
for example, depended on the interplay of actors’ bodies,
playbooks, audience conventions, acoustic environments, and
economic structures, none of which could be abstracted away
without distorting the whole. By analogy, contemporary AI must
be situated within ensembles that include human expertise, cultural

norms, infrastructures, and ecological limits. Thought and action
are always “system-level activities” (Tribble and Sutton, 2011).

This ecological perspective makes visible risks that are otherwise
obscured. If cognition is distributed, systemic imbalances rather
than isolated errors become the primary source of fragility.
Homogenization of knowledge through algorithmic filtering,
erosion of embodied skills displaced by automation, or the collapse
of epistemic diversity in networked cultures are not technical
malfunctions but ecological pathologies. Hutchins (2010) stresses
that cognitive ecosystems gain their resilience from diversity and
redundancy: multiple pathways of representation, interaction,
and interpretation buffer the system against failure. By contrast,
overreliance on uniform Al models risks brittleness, where local
perturbations propagate into systemic crises.

“-H""u_\_“‘ I

Al as cognitive

/ o

Ernviroment

s

Fnawledge

Figure 1: Al as Cognitive Ecology (system diagram / hub-and-spokes)

As illustrated in Figure 1, AI must be understood as part of a
cognitive ecology in which humans, culture, knowledge, and
environment are mutually conditioned by and through artificial
systems. The figure visually underscores the paradigm shift: Al is
not a discrete agent but a node in an ecological web of cognition.
Each arrow represents a bidirectional relationship Al shapes human
practices, cultural forms, epistemic resources, and environmental
impacts, while simultaneously being shaped by them. This
relational framing highlights not only the interdependence but
also the fragility of the system. Just as ecosystems can collapse
when keystone species are disrupted, cognitive ecologies can
falter when systemic diversity or balance is lost.

Crucially, this model also foregrounds resilience. Cognitive
ecologies adapt as elements shift: when one dimension is stressed,
others may compensate. Tribble and Sutton (2011) describe how
changes in theatrical technologies from gestural performance to
lighting design reshaped the distribution of attention and skill
across actors, technicians, and audiences. Analogously, as Al
transforms knowledge production and labour, resilience will
depend on how humans, institutions, and environments redistribute
capacities. Recognizing Al as ecology thus invites us to cultivate
redundancies, preserve epistemic pluralism, and design for
adaptive diversity rather than efficiency alone.

By reframing Al as ecology, we align with a broader trajectory
in cognitive science that has moved from reductionism toward
holism. Hutchins (2010) predicts that the reality of the rich
interconnectivity of the brain, body, and world” will draw together
disparate strands of embodied, enactive, and distributed cognition
into a coherent ecological synthesis. For cultural historians,
Tribble and Sutton (2011) stress that cognition must be analysed
historically and materially, since artefacts and practices are
not external to thought but constitutive of it. Extending these
insights to Al, we see that artificial systems are neither external
tools nor independent agents: they are deeply embedded in, and
transformative of, our cognitive ecologies.

Treating Al as part of a cognitive ecology illuminates the systemic
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conditions under which intelligence, human and artificial,
emerges and persists. It makes clear that risks arise not only
from flawed algorithms but from ecological imbalances, and that
resilience depends on maintaining interdependence, diversity,
and adaptability across humans, cultures, environments, and
knowledge systems.

3. HORIZON Taxonomy of Invisible Costs

The HORIZON taxonomy (Figure 2) visualises the seven
dimensions of invisible costs. Like stressors in an ecological system,
each dimension radiates from the same central phenomenon: the
embedding of Al within human cognitive environments.

Resource
Externalities

<l Offloading

Information
Integrity

¢

Zoomed-in
Feedback Loops

‘ngll zaltion

Normative Drift

Organizational
Memory Loss

Figure 2: HORIZON Taxonomy of Invisible Costs (Petal Ecology Flower
Layout)

3.1 Homogenization

A central invisible cost of generative systems is the homogenization
of cultural and linguistic expression. By design, large language
models and text-to-image systems are probabilistic engines:
they optimize for the most statistically likely continuation of
a prompt, privileging median rather than marginal outputs
(Sourati et al., 2025). This leads to stylistic flattening, where
outputs are grammatically fluent but stylistically neutral and
culturally mainstream. As these systems are integrated across
creative, academic, and professional domains, the very statistical
strength that powers them risks producing a narrowing of cultural
possibility.

The homogenizing dynamic is visible at multiple levels. At
the level of language, empirical studies have shown that LLM-
mediated writing reduces lexical and stylistic variety, erasing
markers of individuality and cultural nuance (Sourati ez al., 2025;
Zhang et al., 2025). Survey-based evidence demonstrates that
when research participants rely on Al to compose open-ended
responses, outputs cluster around homogenised, positive, and
generic formulations, masking underlying diversity in beliefs
and attitudes (Zhang et al., 2025). Cross-cultural experiments
likewise reveal how Al suggestions pull writers from non-Western
contexts toward Western stylistic norms, diminishing culturally
specific expression in favour of globally legible but culturally
impoverished forms (Agarwal ef al., 2025).

Visual culture exhibits similar dynamics. Analyses of text-to-image
systems show that reliance on standardised prompt engineering
practices, coupled with model training on predominantly Western-
centric datasets, generates a convergence toward familiar
aesthetic templates (Palmini and Cetinic, 2024). Even when

user input introduces originality, the reinforcement of shared
prompt structures and the popularity-driven curation of outputs
contribute to visual uniformity. Large-scale studies of online art-
sharing platforms confirm that the introduction of Al assistance
reduces visual novelty across portfolios, as adoption spreads and
community norms recalibrate around Al-influenced aesthetics
(Zhou and Lee, 2024).

Cultural and social implications follow. As generative systems
privilege dominant linguistic and visual repertoires, they risk
marginalising minority voices and alternative epistemologies.
The flattening of linguistic markers not only undermines cultural
preservation but also disrupts fields that rely on the richness of
stylistic variation, such as psychological diagnostics, personnel
evaluation, and sociolinguistic research (Sourati ef al., 2025).
In media and communication contexts, generative tools often
replicate normative identities and suppress non-normative
narratives, reproducing what (Gillespie, 2024) terms the politics
of visibility, where representational harms range from stereotyping
to symbolic erasure. Similar processes are evident in urban-cultural
domains: generative Al tools, when asked to depict local contexts,
tend to foreground commercialised and tourist-oriented elements,
narrowing the perceived scope of cultural life and exacerbating
existing power imbalances (Campo-Ruiz, 2025).

Taken together, these findings suggest that homogenization is not
merely a by-product of generative probability distributions but
a systemic cultural cost with implications for diversity, equity,
and knowledge production. The convergence toward the median
amplifies dominant cultural logics while silencing peripheral ones,
producing an aesthetic monoculture that risks eroding the pluralism
essential to cultural vitality (Karpouzis, 2024; Singh, 2024). This
homogenization is subtle yet pervasive: it is experienced not as
overt censorship but as the quiet disappearance of difference,
drowned beneath the polished fluency of statistical averages.

3.2 Offloading (Deskilling)

One of the most insidious invisible costs of Al integration is the
deskilling that results from the offloading of cognitive labour. As
individuals and organisations increasingly delegate tasks such as
drafting, analysis, recall, and problem-solving to Al systems, core
human competencies risk atrophy. Scholars have long recognised
that automation reshapes expertise by transforming workers from
active decision-makers into passive overseers of “black box”
processes (Rinta-Kahila ef al., 2018). While efficiency gains are
undeniable, the erosion of tacit knowledge and procedural know-
how leaves workers and by extension, societies vulnerable when
systems fail.

The phenomenon extends beyond technical work into broader
domains of cognition and professional judgment. (Matueny, 2025)
argue that dependence on Al fosters an illusion of competence,
wherein individuals mistake Al-generated fluency for personal
mastery. This misperception discourages active engagement
and deep learning, weakening memory, critical thinking, and
metacognitive regulation. Over time, as with the Google Effect
in memory research, what is routinely offloaded to machines is
less likely to be internally retained. The danger is that individuals
come to rely on external systems to such an extent that resilience
in non-digital contexts diminishes.

Empirical studies underscore this fragility. When organisations
discontinue automated systems, latent deskilling becomes
painfully visible. In a case study of accountants, the removal of
an automated fixed-asset management system forced employees to
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relearn procedures they had long neglected, exposing significant
gaps in both declarative and procedural knowledge (Rinta-Kahila
et al.,2018). Such disruptions illustrate that automation not only
reduces the demand for skills in the short term but may also impair
the capacity to recover them in the long term. Similarly, Bushuyev
et al. (2024) highlight the erosion of managerial competencies
in innovation projects, as reliance on Al-generated insights
undermines experiential decision-making, tacit coordination, and
creative risk assessment—skills once central to project leadership.

Yet, deskilling is not uniformly negative. Ong and Png (2021)
provide evidence that automation-induced simplification of
cognitively demanding tasks, such as cashiering or way-finding
for drivers, can enhance job satisfaction and expand labour supply.
By lowering entry barriers, technological deskilling increases
workforce participation, particularly in low-skill sectors. However,
this amenity-driven benefit trades off against the longer-term
resilience of cognitive skills, echoing the broader tension between
efficiency and robustness in work design.

The future of labour markets may therefore hinge on how societies
navigate this dialectic. Zhang et al. (2024) suggest that while
sensory-physical tasks are highly susceptible to automation, social-
cognitive and higher-order reasoning skills retain comparative
resilience. However, sustaining this resilience requires deliberate
investment in cognitive and metacognitive skills, ensuring that
workers cultivate adaptive expertise rather than ceding intellectual
agency to Al. Deskilling is thus not a deterministic outcome of
automation but a contingent one, shaped by how technologies are
integrated into human systems and whether offloading is balanced
with opportunities for skill development.

3.3 Resource Externalities

The material costs of artificial intelligence (Al) systems extend
beyond carbon emissions, manifesting in substantial yet often
invisible demands on electricity and freshwater resources. While
these externalities are rarely factored into assessments of Al’s
sustainability, their ecological implications are profound.

First, the energy intensity of Al training and inference has
escalated sharply with the proliferation of large-scale models. A
single rack of Al hardware, such as NVIDIA H100 GPU clusters,
can consume nearly 39 times the electricity of an average U.S.
household, with hyper-scale data centres approaching the annual
electricity demand of entire metropolitan areas (Sunkara, 2025).
This surge in demand is not evenly distributed, as regional data
centre expansions have destabilising effects on national energy
infrastructures; for instance, Ireland projects that data centres
may soon account for nearly one-third of its total electricity use
(Inie et al., 2025a). While Al-driven optimisation can improve
energy efficiency in sectors such as manufacturing and smart grids
(Nurhaeni et al., 2024; Zakizadeh and Zand, 2024), the rebound
effect suggests that these savings are outpaced by the exponential
growth of computational demand, raising questions about whether
Al constitutes a net energy-saving technology.

Equally significant, though less visible, are AI’s water footprints.
Cooling systems for Al-intensive data centres are overwhelmingly
water-dependent, with evaporative cooling converting freshwater
into vapour that is permanently lost from local watersheds
(Natarajan, 2025). Training and inference runs for advanced
large language models can therefore consume millions of litres
of freshwater, often in drought-prone regions such as Arizona
and Northern Virginia, where competition with residential and
agricultural users sharpens issues of environmental justice

(Natarajan, 2025). Empirical estimates highlight this magnitude:
inference with GPT-4 for a 10-page report can consume over
50 litres of water, compared to less than one litre for smaller-
scale models (Shumba et al., 2025). Such disparities underscore
how infrastructural decisions amplify regional vulnerabilities,
producing what has been termed the hydro-digital paradox,
technological progress intensifying local water scarcity (Natarajan,
2025).

Attempts at mitigation have focused on embedding Al into
sustainable data centre design, including water-efficient cooling,
hardware optimisation, and recycling systems (Hiremath, 2024).
Yet even these innovations risk redistributing rather than resolving
burdens. Life cycle assessments (LCAs) of generative Al services
indicate that focusing narrowly on carbon overlooks intertwined
costs such as water depletion, metal scarcity, and e-waste (Berthelot
et al., 2024). In this sense, Al exemplifies the broader challenge
of “carbon tunnel vision” in sustainability discourse: privileging
emissions metrics at the expense of recognising the full spectrum
of material dependencies (Berthelot ef al., 2024).

The resource externalities of Al reveal a contradiction at the
heart of digital modernity. While Al is celebrated as a driver of
sustainability and efficiency, its hidden appetites for electricity
and freshwater expose new vectors of ecological strain. These
costs are not marginal but systemic, disproportionately affecting
regions already vulnerable to energy and water scarcity. Future
governance of Al infrastructure must therefore reckon with these
invisible costs, shifting sustainability frameworks from carbon-
centric metrics toward integrated assessments that account for
multi-resource entanglements.

3.4 Information Integrity

A central but often underappreciated invisible cost of generative
models lies in their destabilisation of epistemic reliability. While
such models excel at producing fluent and persuasive language,
their confidence calibration is systematically misaligned with
truth value, generating conjectures with the same assertive tone
as verified facts (Krishnan et al., 2024; Tao et al., 2025). This
epistemic opacity erodes not only the reliability of individual
outputs but also the category of knowledge itself, as users
become less able to distinguish justified belief from manufactured
plausibility.

Philosophically, these challenges conventional accounts of
epistemic authority. As (Ferrario et al., 2024) argue, Al systems
cannot be granted genuine epistemic expertise because they
lack the understanding and intellectual virtues necessary for
such a status. Their outputs, however accurate in narrow tasks,
remain severed from justificatory structures. Evans et al. (2021)
underscore this risk in their call for truthful AL, noting that scalable,
personalized untruths may undermine not only individual decisions
but also collective epistemic and democratic deliberation.

Technical responses have sought to reintegrate uncertainty as
an explicit epistemic signal. Approaches such as black-box
uncertainty quantification for LLM-as-a-judge (Wagner et al.,
2024), uncertainty-aware fine-tuning (Krishnan et al., 2024),
and atypical-presentation recalibration in healthcare (Qin et
al., 2024) demonstrate that calibrated confidence can enhance
trustworthiness without sacrificing performance. Yet, large-scale
benchmarking reveals that accuracy and uncertainty are often
decoupled: high-performing models can remain overconfident and
poorly calibrated, particularly on knowledge-heavy tasks (Tao et
al.,2025). Proposals for structured epistemic architectures (Wright,
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2025) suggest a more radical path, embedding propositional
commitment, contradiction detection, and normative truth
maintenance into reasoning systems to prevent epistemic drift.

The invisible cost, therefore, is not reducible to factual error or
isolated hallucination (Ji et al.,2024; Lu, 2025). It is the cumulative
erosion of epistemic integrity where the persuasive fluency of
generative systems destabilises the social trust infrastructure
that underpins knowledge practices. Absent robust mechanisms
for epistemic calibration, users risk conflating probabilistic
text generation with warranted assertion, thereby transforming
knowledge ecosystems into arenas of ambient uncertainty.
This cost manifests less in discrete failures than in the long-
term corrosion of epistemic norms. Safeguarding information
integrity thus requires both technical calibration mechanisms and
normative frameworks that re-anchor generative systems within
truth-conducive practices.

3.5 Zoomed-in Feedback Loops

As generative Al systems increasingly contribute to the pool of
online data, recursive loops emerge wherein models are trained
on their own outputs. This recursive dynamic produces a class
of invisible costs that extend beyond technical degradation to
deeper epistemic narrowing of knowledge systems. Recent
theoretical and empirical work converges on the phenomenon
of model collapse: the progressive deterioration of generative
performance as synthetic data dominates training corpora (Borji,
2024; Seddik ef al., 2024). Collapse manifests statistically when
recursive training erodes the tails of the original distribution,
reducing diversity and yielding homogenised, repetitive, or even
degenerate outputs (Seddik ez al., 2024). The effect is not confined
to text but generalises across modalities, as recursive inpainting
experiments show successive degradation of images until they
drift toward meaningless artefacts (Conde ef al., 2025).

The recursive feedback mechanism operates as both a technical and
epistemic loop. Technically, each generation of models amplifies
the approximation errors of its predecessors, accelerating drift
away from the underlying real-world distribution (Borji, 2024).
Epistemically, the iterative reliance on self-produced data narrows
the representational horizon: what models “know” is increasingly
filtered through their own outputs, risking an autophagic cycle
where the ecosystem feeds on itself (Shumailov er al., 2024),
as discussed in (Borji, 2024). This dynamic threatens not only
accuracy but the breadth of knowledge itself, substituting richness
of human-authored data with recursive self-reference.

Empirical investigations suggest two partial mitigations. First,
mixing real and synthetic data can attenuate collapse, though only
when the ratio of authentic data remains sufficiently high (Seddik
et al., 2024). Second, accumulation rather than replacement
of training data, where each generation augments rather than
overwrites prior corpora bounds error growth and avoids total
collapse (Gerstgrasser ef al., 2024). Yet these mitigations
underscore the structural fragility of recursive feedback loops:
they do not eliminate the epistemic narrowing but only slow its
progression.

Viewed through the HORIZON taxonomy, these loops exemplify
invisible costs: the degradation is subtle, distributed, and often
invisible in the short term, but accumulates over cycles to reshape
entire knowledge systems. Unlike immediate technical failures,
feedback loops risk a gradual impoverishment of the epistemic
commons. In effect, they collapse diversity into predictability,
precision into noise, and world-models into self-referential

artifacts an outcome as socially consequential as it is technically
avoidable.

3.6 Organisational Memory Loss

As organisations increasingly embed critical processes into
proprietary Al models and automated systems, a subtle but
profound erosion of organisational memory emerges. Historically,
institutional knowledge has been sustained through collective
practices, documents, mentorship, and shared routines that both
preserved tacit expertise and enabled its intergenerational transfer
(Falckenthal ez al., 2025). The contemporary shift toward codifying
workflows in prompt templates and Al-generated outputs risks
displacing these social mechanisms of knowledge retention. While
Al-enhanced knowledge management systems promise efficiency
gains through semantic indexing, dynamic retrieval, and automated
synthesis (Jarrahi et al., 2023; Gadde, 2025), their reliance on
vendor-controlled infrastructures centralises knowledge in external
architectures. This creates a form of epistemic dependency, where
the durability of organizational intelligence becomes contingent
upon proprietary platforms rather than distributed human memory.

The implications of this shift are twofold. First, the automation
of tacit knowledge through machine learning and conversational
capture bots provides an expedient but fragile archive. Systems
such as those described by Satsangi (2019) demonstrate how
Al can collect employees’ day-to-day experiences and convert
them into structured repositories. Yet, while such tools preserve
fragments of experiential data, they decouple knowledge from its
embodied context, stripping away the relational and situational
nuance that traditionally sustains expertise (Collins, 2010; cited
in Falckenthal et al., 2025). Without mechanisms of embodied
apprenticeship or interactive sense-making, what persists is an
attenuated representation of practice rather than the adaptive,
resilient memory required for organisational continuity (Nonaka
and Takeuchi, 2021, cited in Falckenthal ef al., 2025).

Second, organisational dependence on Al intermediaries reshapes
the ecology of knowledge transfer. Multi-agent system research
shows that distributed knowledge exchange thrives when
responsibilities are shared through organisational protocols and
negotiated roles (Farias ef al., 2024). By contrast, outsourcing
memory to algorithmic infrastructures reduces opportunities for co-
constructed meaning and weakens the social level of organisational
learning. The result is not only an erosion of collective memory but
also a narrowing of adaptive capacity in the face of disruptions.

This trajectory aligns with concerns in the knowledge management
literature that Al systems, while augmenting knowledge creation
and retrieval, simultaneously fragment institutional continuity
by privileging efficiency over social embedding (Jarrahi ez
al., 2023). The more organisations normalise the substitution
of mentoring, storytelling, and shadowing with Al-mediated
archives, the more fragile their epistemic resilience becomes.
Thus, organisational memory loss is not a passive by-product
of technological change but an invisible cost where the very
infrastructures designed to preserve knowledge paradoxically
accelerate its decontextualization and externalisation.

3.7 Normative Drift

Among the less visible but most consequential dimensions of
the HORIZON taxonomy of invisible costs is normative drift,
the gradual, often unexamined process by which Al systems
default guardrails, refusals, and stylistic conventions become
taken-for-granted social norms. Unlike explicit regulation, where
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laws or policies are openly debated and codified, normative drift
occurs through cumulative micro-interactions with Al systems,
where corporate or technical defaults are silently naturalised as
appropriate ways of speaking, refusing, or reasoning.

Guardrails such as refusal styles or politeness defaults are
never normatively neutral. As Sekrst ef al. (2024) show in their
discussion of customizable guardrails, even technical interventions
designed for harm reduction encode normative choices about
civility, safety, and appropriateness. For example, when a language
model consistently responds to risky or controversial queries with
deferential refusals, it implicitly sets expectations about what
kinds of discourse are considered beyond the pale, not just for
machines, but for humans engaging with them. Over time, these
outputs can act as norm entrepreneurs, subtly steering cultural
expectations of politeness, risk tolerance, or moral acceptability.

The concern is not merely theoretical. Scholars of design and
technology have long argued that artefacts embody values and
political commitments (Vermaas and Stone, 2020). Yet what
distinguishes Al is the opacity of its normative loadings and
the velocity of its diffusion. Unlike infrastructure norms, which
evolve slowly across decades, Al defaults can globalise within
months, reaching billions of users before any meaningful public
deliberation (Luccioni and Bengio, 2019). This creates a profound
mismatch between the speed of technological diffusion and the
slower timescales of democratic norm formation (Baronchelli,
2024).

This acceleration magnifies the risks of homogenization. Lim et
al. (2023); Seo and Kwon (2024) emphasise that social norms
surrounding Al are shaped not only by regulators and ethicists
but also by the daily practices of developers, corporations, and
end-users. When billions of interactions reinforce uniform refusal
phrasings or “politeness defaults,” the result is a powerful feedback
loop that narrows cultural variation and epistemic diversity. Such
bottom-up norm formation is particularly concerning because
it often occurs without transparency about whose values are
embedded or how alternatives might be considered.

Moreover, cross-cultural tensions sharpen the stakes of normative
drift. As Younas (2023) argues, many Al ethics frameworks
reflect Western liberal-democratic traditions, privileging certain
norms of individual autonomy or secular risk assessment. When
these defaults are exported globally, they risk marginalising
alternative cultural traditions of moral reasoning—for example,
relational ethics in Confucian contexts or Ubuntu ethics in African
traditions. If left unexamined, normative drift may thus not only
flatten communicative styles but also entrench a form of cultural
imperialism under the guise of “safety.”

The governance literature underscores that algorithms already
act as regulators, shaping visibility, credibility, and access to
information (Saurwein et al., 2015; Lucero, 2020). Yet current
governance debates focus predominantly on transparency, bias,
and accountability, with far less attention to the subtle normative
imprint of guardrails. To resist unexamined drift, governance
must expand to include explicit acknowledgement of value-laden
defaults, participatory processes for shaping refusal styles, and
pluralistic infrastructures that allow users to select among different
normative frameworks rather than being locked into a single
corporate template.

Taken together, normative drift exemplifies the broader dynamics
captured in the HORIZON taxonomy of invisible costs (see
Table 1). Like homogenization, it threatens cultural diversity;

like information integrity failures, it risks epistemic trust. But
its distinctive danger lies in its silence: norms become standards
without ever being publicly chosen. Preventing normative drift,
therefore, requires mechanisms of transparency, participatory
deliberation, and cultural co-genesis, ensuring that the invisible
costs of Al do not calcify into invisible norms.

Table 1. HORIZON Taxonomy of Invisible Costs in Generative Al

Dimension | Definition Example Risk Possible
Mitigation

H - Homog- | Convergence | Al-assisted Loss of Enforce

enization of outputs essays sound | cultural output diver-
toward me- | stylistically diversity; sity budgets;
dian styles or | similar. flattening of | promote
perspectives. originality. pluralistic

sampling.

O - Offload- | Reliance on | Students Erosion “Al-off drills”

ing (Deskill- | Al reduces rely on Al'to | of base- in education

ing) human draft, weak- | line skills; and critical
practice of ening their vulnerability | professions.
cognitive argumenta- | during Al
skills. tion ability. | failures.

R - Re- Hidden en- | Water use for | Environmen- | Standardised

source Ex- vironmental | data centre tal strain, per-query

ternalities costs beyond | cooling; especially in | disclosures
carbon. power-grid | water-scarce | (RTE labels).

stress. regions.

I - Infor- Models LLM Epistemic Calibrated

mation output fluent | fabricates collapse; ero- | uncertainty

Integrity but mislead- | citations sion of trust | by default;
ing content | confidently. | in knowledge | citation
without systems. verification
uncertainty. tools.

Z- Recursive Models Cultural and | Curated

Zoomed-in | training on trained on epistemic training data;

Feedback Al outputs synthetic narrowing; monitoring

Loops narrows data collapse | degraded AI | “synthetic
diversity and | in perfor- reliability. contamina-
accuracy. mance. tion”

O - Organ- | Tacit Firms are Fragile Hybrid

isational knowledge embedding | institutional | storage of or-

Memory migrates into | SOPs into memory; ganisational

Loss Al prompts | prompt vendor knowledge;
or vendor libraries. lock-in. resilience
systems. audits.

N - Norma- | Al defaults Model Silent Transpar-

tive Drift and guard- refusal styles | adoption of | ency about
rails shape become the | corporate normative
cultural/eth- | de facto norms with- | choices;
ical norms politeness out debate. participatory
implicitly. standard. design.

Note. Table 1 summarises the HORIZON taxonomy of “invisible
costs” in generative Al, offering concise definitions, illustrative
examples, key risks, and potential mitigation strategies. The
taxonomy highlights how technical defaults and systemic
properties of Al models can exert hidden but significant cultural,
environmental, and organisational effects.

4. Minimal-Effort Measures: Making the Invisible Visible

Scholars have emphasised that evaluation frameworks for artificial
intelligence (Al) too often privilege accuracy while neglecting
broader ethical, epistemic, and ecological dimensions (Ge et al.,
2010; Singh et al., 2014). In higher education, this narrow focus
obscures fairness, accountability, transparency, and ethics (FATE),
which shape how Al systems intersect with social and cognitive
processes (Memarian and Doleck, 2023). Sustainability research
likewise highlights the absence of standardised, transparent metrics
for energy, water, and carbon disclosure, hindering accountability
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and comparability (Adelakun ef al., 2024). Across domains from
hallucination detection in radiology and business education (Dang
and Nguyen, 2025; Hardy ef al., 2024) to recommender system
diversity (Ge et al., 2010), a common theme emerges: invisible
costs must be rendered visible through simple, tractable measures.

We therefore propose four conceptual metrics, DAO, CDQ, EIS,
and RTE, that distil these insights into minimal-effort heuristics for
Al audits. DAO (Diversity of AI Outputs) operationalises concerns
about homogenization and lack of serendipity in generative Al (Ge
etal.,2010). CDQ (Cognitive Dependence Quotient) foregrounds
automation bias and the risk of over-reliance, echoing findings
that students often fail to detect Al hallucinations (Dang and
Nguyen, 2024). EIS (Epistemic Integrity Score) responds to
epistemic fragility documented in medical Al and education, where
unverifiable or overconfident outputs erode trust (Hardy et al.,
2024; Thomas et al., 2024). Finally, RTE (Resource Transparency
Equivalent) adapts sustainability reporting practices, offering
standardized disclosure of energy, water, and carbon per query
(Adelakun et al., 2024; Basereh ef al., 2021).

Table 2 summarizes these conceptual metrics, illustrating how
they translate abstract ethical concerns into actionable indicators.

Table 2. Conceptual Metrics for Invisible Costs

Metric What It Measures | Example Application
DAO (Di- Lexical/semantic | Running 10 Detecting
versity of Al dispersion across | completions for | homogenization;
Outputs) multiple gener- one prompt, setting “diversity
ations of same measuring budgets”
prompt. variety.
CDQ (Cogni- | Ratio of task steps | Student essay Monitoring
tive Depend- | done by Al vs outline: 80% AI, | deskilling risk;
ence Quotient) | human. 20% human. thresholds for
safety-critical
domains.

EIS (Epistem-

Proportion of

10 fact queries

Tracking epis-

carbon, and water.

ic Integrity outputs that - only 3 include | temic trust-
Score) express calibrat- source + un- worthiness of

ed uncertainty certainty > EIS outputs.

& cite verifiable =0.3.

evidence.
RTE (Resource | Standardised 1,000 prompts > | Sustainability
Transparency | disclosure of 12 kWh, 50 litres | reporting; con-
Equivalent) per-query energy, | of water. sumer awareness.

5. Case Vignettes

5.1 Education: Homogenised Writing

Teachers increasingly report that student essays shaped by Al tools
exhibit striking similarities in phrasing, argumentative structure,
and rhetorical cadence, even when plagiarism detection software
does not flag them. This phenomenon signals a shift from overt
academic dishonesty to a subtler homogenization of discourse.
While Al can scaffold grammar, coherence, and surface polish,
its generative templates risk narrowing the expressive range of
student writing (Pryma ef al., 2025).

Empirical evidence suggests that this homogenization effect
is already observable in practice. In a controlled experimental
study conducted by researchers at Cornell University, participants
from different cultural backgrounds (including U.S. and Indian
students) were asked to write short essays with and without
Al writing assistance. The study found that Al-assisted texts
became significantly more like one another in terms of lexical

choice, sentence structure, and rhetorical framing, thereby
reducing culturally distinct and stylistically idiosyncratic features
typically present in unaided writing. The authors conclude that
Al suggestions systematically push users toward more generic,
standardised forms of expression, demonstrating that convergence
in writing style is not merely a theoretical concern but a measurable
outcome of Al-mediated composition (Stanley, 2025).

The homogenization effect is not merely stylistic but epistemic.
Studies show that Al writing assistants encourage formulaic
arrangements and “robotic” sentence structures, often reducing
opportunities for rhetorical experimentation and independent
argument construction (Basic¢ et al., 2023). School and university
educators worry that such reliance produces text that is
grammatically correct yet cognitively thin, with diminished critical
reasoning and originality (Akyildiz, 2024; Malik et al., 2023).

Survey-based research confirms that students themselves are
ambivalent: they value AI’s ability to improve fluency, reduce
errors, and provide efficient scaffolding, yet many also fear it
stifles their creative development and voice (Marrone et al., 2022;
Sharma, 2025). This aligns with findings that younger generations
rely more heavily on generative Al than teachers and parents,
raising concerns about long-term dependence (Sharma et al.,
2025).

Educators thus face a paradox. On one hand, Al can act as a
relational artefact that supports collaboration and expands student
exploration (Lim ef al., 2023). On the other hand, unchecked
use risks routinization, where students substitute authentic
experimentation with Al-optimised phrasing. The result is a
narrowing of the discursive field: writing that passes as “authentic”
but lacks the idiosyncratic markers of human experimentation
and voice (Avila-Chauvet and Mejia, 2023; Khalil and Er, 2023).

The case of homogenised writing underscores the need for
pedagogical strategies that position Al as a supplement rather than
a surrogate. As several studies emphasise, balanced integration
requires teacher mediation, explicit creativity-focused tasks,
and opportunities for students to deliberately diverge from Al-
suggested patterns (Akyildiz, 2024; Lim ef al., 2023). Without
such measures, the promise of Al in education risks devolving
into a culture of standardised expression, were efficiency eclipses
originality.

5.2 Organisations: Prompt-Dependent Workflows

A growing number of organisations are migrating creative and
operational tasks into Al-mediated environments, often organised
around prompt libraries. While this shift increases efficiency and
standardises outputs, it also risks restructuring organisational
learning in ways that erode collective memory and tacit knowledge.
Prompt engineering - whether through zero-shot, few-shot, or
chain-of-thought techniques - allows firms to leverage pre-trained
models without retraining (Gu et al., 2023; Sahoo et al., 2024).
Yet this very reliance on externalised prompts transforms expertise
from a situated, experiential practice into a procedural interaction
with templates (Sikha et al., 2023).

This dynamic is not merely speculative, as prompt libraries
are already being implemented in real organisational settings
to structure and standardise Al-mediated work. Enterprise
documentation from Microsoft describes prompt libraries as
shared repositories of reusable prompts designed to accelerate task
completion and ensure consistency across teams (Phil-cmd, 2024).
Practitioner-oriented guidance likewise encourages organisations
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to centralise prompt development as part of formal governance
structures to scale generative Al use efficiently (Themefisher,
2024). At the same time, empirical workplace research indicates
a cognitive trade-off associated with such reliance. Qualitative
interview-based research on human Al augmentation reports that
employees express concerns about dependency and deskilling
when Al systems increasingly mediate problem-solving activities,
reducing opportunities for skill enactment and experiential
learning. Complementary research on Al use in work contexts
similarly highlights that automation and augmentation can lead to
deskilling depending on how tasks are structured and routinised
(Charpied, 2025).

Taken together, these sources provide verifiable evidence
that organisations are actively structuring workflows around
reusable prompts and that such arrangements can plausibly
externalise reasoning processes, raising risks for the durability
of organisational knowledge and skill development.

The case of a technology startup that migrated its design
brainstorming into prompt-guided Al illustrates this risk vividly.
Within months, employees ceased to learn the rationales
underlying design choices; organisational memory was
effectively outsourced to the model. This aligns with broader
evidence that Al-based augmentation often produces deskilling,
as workers lose opportunities for experimentation, overview, and
reflective judgment (Crowston and Bolici, 2025; Huseynova,
2024). Although human Al augmentation is typically framed as
complementary, blurred boundaries between augmentation and
substitution frequently mean that workers merely input prompts
and evaluate outputs, rather than engaging in deeper knowledge
creation (Huseynova, 2024).

From a knowledge management perspective, the outsourcing of
decision rationales to Al threatens the durability of organisational
memory. Scholars highlight that while emerging technologies
like AT can automate tacit knowledge capture, they also risk bias,
over-reliance, and the erosion of unarticulated know-how (Nonato
and Perez, 2025; Storey, 2025).

Traditional knowledge management strategies, personalisation
(relying on human expertise) and codification (relying on stored
databases) are both destabilised when Al itself becomes the
locus of “hidden” organisational knowledge (Fteimi and Hopf,
2021). Without deliberate governance, firms risk creating brittle
knowledge ecosystems, in which the interpretive capacities of
employees atrophy while design rationales remain locked in
opaque prompt—output cycles.

Nevertheless, research also emphasises that outcomes are not
uniform: Al adoption in knowledge work can simultaneously
produce new tasks, new roles, and skill requirements, especially
when paired with participatory change management (von
Richthofen et al., 2022). The organisational challenge, then, is
not whether to use Al, but how to embed it without allowing
prompt dependence to substitute for organisational reasoning.
Building resilience requires designing workflows that deliberately
expose employees to the “why” behind design choices, ensuring
that organisational memory remains distributed among people,
not just prompts.

6. Governance and Design Playbook
The transition from conceptual diagnosis to institutional response

requires a clear linkage between invisible costs, their measurement,
and possible interventions. Section 4 outlined minimal-effort

metrics such as the Diversity of AI Outputs (DAO) and the
Epistemic Integrity Score (EIS) as heuristics for rendering latent
risks visible. Governance design must then translate these signals
into actionable practices. Figure 3 depicts this flow: invisible costs
are operationalised through metrics, which in turn provide entry
points for governance interventions. By structuring the relationship
in this way, the diagram underscores that interventions are not
abstract aspirations but concrete responses to measurable patterns.

DAD Diversity Budgets

U l

r f

EIS Diversity Budgets

Invisible cost fr— I Interventions

Figure 3: Governance flow - from Invisible cost to Interventions

The logic of diversity budgets, for example, follows directly
from DAO: if the diversity metric declines, governance should
impose quotas that encourage models to sample more widely,
thereby sustaining a long-tail distribution of cultural expression
(Shur-Oftry et al., 2024; Wan and Kalman, 2025). Similarly, a
low EIS score calls for interventions such as “uncertainty by
default,” which aligns Al systems with scientific norms of hedging
and tentativeness rather than overstated certainty (Ho and Caals,
2024; Wihbey, 2024).

To operationalise the playbook, consider two illustrative cases.
In education, a persistently low Diversity of AI Outputs (DAO)
score in student writing tools would trigger assignment redesign,
such as requiring students to generate multiple Al-assisted drafts
using different prompts or models and to explicitly diverge from
Al outputs through reflection and revision. At the institutional
level, DAO thresholds could be enforced by rotating approved Al
models or limiting repeated reuse of identical prompt templates
across courses. In organisational settings, a low Epistemic Integrity
Score (EIS) in decision support systems would prompt design
interventions such as uncertainty by default, requiring Al outputs
to include confidence ranges, alternative explanations, or explicit
unknowns. Firms could further reinforce EIS governance through
periodic Al off workflows in which teams justify decisions without
Al assistance, ensuring that reasoning remains distributed among
employees rather than embedded solely in model outputs.

This governance flow reframes invisible risks as tractable levers
of intervention. Rather than treating homogenization, epistemic
fragility, or deskilling as diffuse concerns, the framework connects
each to a corresponding design doctrine. In doing so, it embeds
accountability at the level of system design: diversity quotas
as correctives to monoculture, epistemic hedging as insurance
against lock-in, periodic “Al-off” practices as safeguards against
deskilling, and transparency labels as accountability mechanisms
for ecological costs (Agha ef al., 2025; Campo-Ruiz, 2025).

What emerges is a playbook that treats governance as an iterative
feedback loop. Metrics track the health of epistemic and cultural
ecosystems, while interventions are triggered when thresholds are
crossed. The diagram thus represents more than a static mapping:
it signals a dynamic governance architecture, one capable of
adapting as invisible costs surface and as interventions reshape
the terrain.

7. Conclusion
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This paper has advanced the argument that generative Al should
be understood not merely as a tool or agent but as an ecology,
an environment that reshapes the very conditions of cognition,
culture, and epistemic trust. This ecological framing exposes
risks that are neither captured by benchmark performance
nor reducible to carbon costs. They are instead slow-moving,
systemic transformations: the homogenization of discourse, the
erosion of skills through over-reliance, the depletion of hidden
ecological resources, and the destabilisation of information
integrity, recursive feedback loops, organisational memory loss,
and normative drift. Taken together, these invisible costs suggest
that the most consequential impact of Al may not be technical
error, but ecological imbalance.

This analysis does not deny the substantial benefits of generative
Al Across education and organisational contexts, Al systems
demonstrably improve efficiency, reduce cognitive load on routine
tasks, and expand access to expertise by supporting users in
drafting, summarising, coding, and problem-solving. In many
cases, these systems enable individuals and institutions to perform
tasks that would otherwise be prohibitively time-consuming or
inaccessible. The concern addressed in this paper is therefore not
whether Al should be used, but how its benefits can be realised
without allowing efficiency gains to obscure or amplify longer-
term epistemic, cultural, and organisational costs.

By foregrounding invisible costs, this work makes two
contributions. First, it reframes existing debates on Al evaluation,
which remain dominated by visible metrics of performance,
fairness, and emissions (Luccioni et al., 2024; Eriksson et al.,
2025). While such metrics are necessary, they are insufficient to
account for Al’s role in shaping human cognitive infrastructures.
The ecological perspective insists that intelligence is sustained not
by isolated algorithms but by interdependent systems that draw
resilience from diversity, redundancy, and contextual adaptation
(Hutchins, 2010; Tribble and Sutton, 2011). Second, the paper
operationalises this insight through the HORIZON taxonomy
and the proposed indicators DAO, CDQ, EIS, and RTE. These
minimal-effort measures translate abstract risks into actionable
metrics, rendering latent costs visible and therefore governable.

The implications extend across domains. In education, over-
reliance on generative systems risks narrowing expression and
critical reasoning, demanding pedagogical interventions that
cultivate divergence rather than conformity (Agarwal e al., 2025;
Pryma et al., 2025). In organisations, prompt-dependent workflows
may erode tacit expertise, raising questions about how to sustain
institutional memory when knowledge is increasingly externalised
into vendor-controlled infrastructures (Jarrahi et al., 2023;
Falckenthal er al., 2025). At the societal level, recursive training
on Al-generated content risks epistemic collapse, as synthetic
data feeds back into future models, progressively narrowing the
representational horizon (Borji, 2024; Gerstgrasser et al., 2024).
These trajectories highlight that the stakes of Al adoption are
not simply efficiency or productivity but the health of cognitive
ecologies that underpin democratic deliberation, cultural vitality,
and organisational resilience.

Yet these risks also point to constructive pathways. If
homogenization is a stressor, then deliberate diversity budgets
in generative outputs can sustain pluralism. If epistemic integrity
is fragile, then uncertainty-by-default and verifiable citation
protocols can align machine discourse with scientific norms
(Ho and Caals, 2024; Krishnan ef al., 2024). If organizational
knowledge risks decontextualization, then hybrid approaches
that pair Al archives with embodied apprenticeship can preserve

tacit expertise (Nonaka and Takeuchi, 2021). And if resource
externalities are obscured by carbon tunnel vision, then RTE-style
disclosures can surface the full ecological footprint of Al, enabling
informed governance (Adelakun et al., 2024; Berthelot et al.,
2024). These interventions are modest in design but systemic in
effect: they recalibrate incentives away from narrow optimization
toward stewardship of the conditions under which intelligence
thrives.

The limitations of this study must also be acknowledged. The
HORIZON taxonomy is necessarily conceptual and exploratory;
further empirical work is needed to test its categories, refine
its measures, and assess its applicability across cultural and
institutional contexts. The proposed indicators are heuristic rather
than standardized metrics, requiring interdisciplinary collaboration
to integrate them into regulatory frameworks and organizational
practice. Moreover, while the ecological metaphor provides
analytical leverage, it should not obscure the material and political
dimensions of Al infrastructures, which are shaped by corporate
interests, state power, and global inequities (Chester and Allenby,
2023; Scheuerman et al., 2021).

Nonetheless, the ecological perspective advanced here is intended
as a provocation to reorient the discourse. The central question is
not whether Al systems outperform benchmarks, but whether they
enrich or erode the ecologies of human thought. To frame Al as
ecology is to recognize that invisible costs are not marginal side
effects but central dynamics, shaping what kinds of knowledge
endure, whose voices are amplified, and what forms of reasoning
are considered legitimate. Future research must therefore move
beyond accuracy and fairness audits toward ecological audits that
assess the resilience of cultural, cognitive, and epistemic systems
in the presence of pervasive generative models.

If the twentieth century was defined by the engineering of technical
systems, the twenty-first will be defined by the stewardship of
cognitive ecologies. Generative Al will continue to proliferate;
the task is to ensure that its integration strengthens rather than
corrodes the infrastructures of thought. That task requires not
only better models but also better metaphors, better measures,
and above all, better care for the habitats of human cognition.
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