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Abstract

This study presents a machine learning-based framework for enhancing the prediction and optimization of CO- and CHa emission reduction
potential using multi-sectoral and socio-economic data, aligned with Sustainable Development and climate action goals. Leveraging Random
Forest Regression, the model achieved exceptional predictive performance (R>~0.997, RMSE = 53.69), with predicted emissions closely
matching observed values and minimal systematic bias. Feature importance analysis identified oil production, coal-related emissions, and
other CO: sources as the dominant contributors, while GDP and cement production exhibited moderate influence. Correlation analysis
revealed strong interdependencies between greenhouse gas emissions and factors such as population, N-O emissions, and fossil fuel
consumption, underscoring the interconnected nature of emission drivers. The novelty of this approach lies in integrating high-resolution
data with advanced predictive modeling to not only forecast emissions accurately but also pinpoint priority areas for targeted mitigation
strategies. The findings provide a scalable, evidence-based decision-support tool for policymakers, enabling them to design effective
interventions that accelerate decarbonization, methane reduction, and broader Sustainable Development objectives.
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Introduction and Oluwabunmi 2024). The persistence and potency of these
gases make their reduction a global priority.

Carbon dioxide (CO2) and methane (CH4) are among the most

impactful greenhouse gases (GHGs) influencing global climate
change due to their strong radiative forcing and significant
contribution to global warming (Filonchyk et al. 2024; Pulles
and Van Amstel 2010). While CO: remains the most abundant
anthropogenic GHG, primarily from fossil fuel combustion and
deforestation (Brander and Davis 2012), CHa is particularly
concerning because of its high global warming potential over
80 times that of CO: on a 20 years timescale despite its lower
atmospheric concentration (Pulles and Van Amstel 2010).
Studies highlight that both gases drive increases in average
global temperature, disrupt precipitation patterns, and intensify
extreme weather events, posing threats to biodiversity, food
security, and human well-being (Filonchyk et al. 2024; Faraday

To address these challenges, international frameworks such as the
Paris Climate Agreement set ambitious targets to limit temperature
rise to well below 2 °C, with efforts to stay within 1.5 °C above
pre-industrial levels (Li et al. 2024; Kreibich 2024). Meeting
these goals requires significant reductions in both CO2 and CHa,
with CHa control offering faster climate benefits due to its shorter
atmospheric lifespan (Pulles and Van Amstel 2010). However, as
Alagade and Sahu (2025) note in their satellite-based greenhouse
gas forecasting work, current emission trajectories suggest that
existing measures are insufficient to meet climate goals. This
underscores the need for data-driven, predictive, and optimization-
based strategies that can identify high-impact interventions and
accelerate emission reduction progress.
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Figure 1. Machine learning framework for predicting CO: and CH:+
concentrations. Adapted from Park et al. (2025).

Figure 1 shows a machine learning based framework for predicting
CO: and CHa4 emissions using environmental and atmospheric
monitoring data, where inputs such as NOz, NO, SO, Os, CO,
particulate matter (PM), and weather parameters are processed
through models like Random Forest, LSTM, and ensemble learning
to generate predictive insights on greenhouse gas concentrations.
The framework emphasizes model evaluation through testing,
feature importance ranking, and cross-validation, ensuring reliable
capture of emission dynamics. Beyond prediction, such approaches
can be integrated with technological solutions, including smart
exhaust after-treatment systems and catalytic converters that
dynamically optimize emission control (Wu et al. 2024; Bakhchin
etal. 2024), and with zeolite-based adsorbents for efficient carbon
capture from point sources (Zhang et al. 2025). They also align
with advances in materials science, such as molecular dynamics
simulations for CO2 and CH4 hydrate replacement in porous media
to support methane recovery and carbon sequestration (Zhang
et al. 2024), as well as nature-based strategies like enhancing
plant diversity to improve soil carbon storage (Dang et al. 2024).
Together, this highlights the potential of machine learning as
a predictive backbone that strengthens both technological and
ecological pathways for greenhouse gas reduction.
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Figure 2. Supervised learning framework for air quality prediction.
Reprinted from Essamlali et al. (2024).

Figure 2 illustrate a supervised machine learning diagram that
offers valuable tools for urban air quality prediction by using
monitored data such as CO2, SOz, NO2, and PMio. Through
classification, models can predict AQI categories, detect pollution
events, and identify emission sources, while regression approaches
estimate pollutant levels, forecast future air quality, and quantify
emissions (Essamlali et al. 2024). Beyond monitoring, machine
learning complements technological solutions like smart exhaust
after-treatment systems, catalytic converters, and carbon capture
and utilization technologies by enhancing predictive accuracy
and optimization of emission control (Wu et al. 2024; Bakhchin
et al. 2024). By integrating diverse datasets, including socio-
economic indicators, industrial activity, and energy use, models

such as gradient boosting, random forests, and neural networks
can forecast emissions, identify key drivers, and assess the
impacts of policy or technological interventions (Alagade and
Sahu 2025; Dang et al. 2024). These predictive insights support
innovations such as zeolite-based adsorbents for CO: capture
(Zhang et al. 2025), hydrate replacement for methane recovery
and sequestration (Zhang et al. 2024), and nature-based solutions
like enhancing plant diversity to boost soil carbon storage (Dang
et al. 2024). Ultimately, optimization algorithms applied to ML
outputs can identify efficient intervention strategies for reducing
CO: and CH4 while aligning with global climate goals.

Despite the availability of emissions data, advanced statistical
models, and mitigation technologies, there is still a limited
integration of machine learning-based prediction with optimization
frameworks that jointly address CO2 and CH4 reduction potential.
This research seeks to fill that gap by developing a machine
learning-enhanced framework to analyze patterns and drivers
of CO: and CHa emissions, forecast future emission trends
under various intervention scenarios, and optimize strategies to
maximize reduction potential. In doing so, it builds upon prior
findings in greenhouse gas science (Filonchyk et al. 2024; Pulles
and Van Amstel 2010; Brander and Davis 2012), technological
innovation (Wu et al. 2024; Bakhchin et al. 2024; Zhang et al.
2025; Zhang et al. 2024), and predictive analytics (Alagade and
Sahu 2025; Dang et al. 2024), while aligning with international
climate policy objectives (Li et al. 2024; Kreibich 2024).

Related Works

Global CO: and CHa emissions have been extensively studied due
to their significant impact on climate change and environmental
sustainability. CO: emissions primarily result from fossil fuel
combustion, industrial processes, and deforestation, while CHa
emissions are largely driven by agriculture, waste management,
and energy production (Pulles and Van Amstel 2010; Brander
and Davis 2012). Filonchyk et al. (2024) highlight that the
combined radiative forcing of these gases accelerates global
warming, with CHa being over 80 times more potent than CO:
on a 20-year horizon. Recent trends indicate a continuous rise in
global emissions, despite international agreements such as the
Paris Climate Accord, underscoring the urgency for advanced
monitoring and mitigation approaches (Li et al. 2024; Kreibich

2024).
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Figure 3. Framework integrating Al and IoT for real-time monitoring and
prediction of building carbon emissions. Adapted from Hua et al. (2025).

Figure 3 show a Machine learning (ML) combined with IoT
provides powerful tools for predicting and optimizing carbon
emissions by integrating data from gas sensors, industrial activity,
energy use, and environmental monitoring (Alagade and Sahu
2025; Dang et al. 2024). Advanced models such as gradient
boosting, random forests, and neural networks can forecast
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emissions, identify key drivers, and evaluate the effectiveness of
policy or technological interventions (Wu et al. 2024; Bakhchin et
al. 2024). As illustrated in AI-ToT frameworks, these approaches
enable real-time monitoring and decision support, ensuring
efficient CO2. and CHa mitigation aligned with global climate
goals (Zhang et al. 2024; Zhang et al. 2025; Hua et al. 2025).

Various strategies have been implemented to reduce greenhouse
gas emissions, ranging from technological interventions to policy-
driven frameworks. Technological solutions include catalytic
converters, carbon capture and storage (CCS), zeolite-based CO-
adsorption, and smart exhaust after-treatment systems capable
of adapting in real-time to operating conditions (Wu et al. 2024;
Bakhchin et al. 2024; Zhang et al. 2025). Innovative approaches,
such as CO.—CHa4 hydrate replacement in porous media for
combined methane recovery and carbon sequestration, further
broaden the mitigation toolkit (Zhang et al. 2024). On the policy
front, global and regional agreements, coupled with sector-specific
emission standards, aim to accelerate decarbonization while
supporting sustainable economic growth (Li et al. 2024). However,
the implementation of these strategies often faces challenges
related to cost, scalability, and integration across multiple sectors.

In recent years, machine learning (ML) has emerged as a powerful
tool for environmental data analysis, emissions forecasting,
and optimization of mitigation strategies. ML models such as
random forests, gradient boosting, and neural networks have
been successfully applied to predict GHG emissions, identify key
emission drivers, and evaluate intervention scenarios (Alagade
and Sahu 2025; Dang et al. 2024). These methods outperform
traditional statistical approaches in handling large, heterogeneous
datasets and capturing complex non-linear relationships. Despite
these advances, most existing studies focus on either CO: or
CHa independently, target specific geographic regions, or employ
predictive models without optimization capabilities. This creates
a research gap for integrated frameworks that simultaneously
address both CO2 and CHa, leveraging ML for joint prediction
and optimization to inform cross-sectoral emission reduction
strategies.

Machine learning (ML) has emerged as a versatile tool for
enhancing greenhouse gas (GHG) reduction strategies by
improving prediction accuracy and optimizing interventions
across multiple sectors. In carbon capture, utilization, storage,
and transportation, ML models enable precise efficiency
assessments and risk prediction (Du et al. 2025), while global
forecasting studies demonstrate their value in projecting reduction
trajectories under energy transition scenarios (Gan and Zhao
2024). Applications extend to biomedical outcomes of CO-
reduction (Shafaghat 2025), optimization of wastewater treatment
within international guidelines (Kothale and Sadgir 2025), and
predictive analytics for sustainable industrial production (Ojadi et
al. 2023). Advanced hybrid neural networks have been developed
to improve methane separation, CO: sequestration, and methane
recovery from coal seams (Xue et al. 2024a; Xue et al. 2024b),
while optimization techniques also support hydrogen production
from biomass-derived methane (Ehinmowo et al. 2025). On the
materials front, ML accelerates the discovery of covalent organic
frameworks for energy and environmental applications (Wang et
al. 2025) and provides quantitative insights into regional carbon
neutrality policy synergies through deep learning (Zhang and Feng
2024). Collectively, these studies demonstrate that ML not only
strengthens predictive modeling of CO: and CHa4 reduction but
also optimizes sectoral interventions, thereby supporting global
carbon neutrality and sustainability targets.

Methodology

This study adopts a data-driven machine learning framework
to predict and analyze CO:» and CH4 emissions across multiple
countries using historical environmental and socio-economic data.
The methodology is structured into five stages: data acquisition,
preprocessing, exploratory analysis, model development, and
scenario simulation. The dataset, obtained from global emissions.
csv, contains annual emission values along with GDP, population,
and sector-specific breakdowns such as coal, oil, gas, cement,
flaring, and other sources. Preprocessing will include handling
missing numerical values through mean imputation, creating
composite indicators such as emissions per capita and emissions to
GDP ratio, and standardizing features using Z-score normalization
to prepare the data for model training.

Exploratory Data Analysis (EDA) will be conducted to identify
patterns, assess emission trends, and examine relationships between
socio-economic factors and emissions. Planned visualizations
include correlation heatmaps to analyze inter-variable relationships
and time series plots to illustrate historical trends for the top
CO: emitting countries. For predictive modeling, Random Forest
Regression will be implemented for both CO: and CHa due to its
robustness in handling non-linear relationships and heterogeneous
datasets. Hyperparameter tuning will be performed using grid
search cross-validation to determine optimal settings such as
tree depth, number of estimators, and minimum sample split
size. Model performance will be evaluated using Root Mean
Squared Error (RMSE) and the coefficient of determination (R?),
with cross-validation applied to enhance reliability and reduce
overfitting risks.

To improve interpretability, feature importance analysis will
be performed using both built-in Random Forest importance
scores and permutation importance to identify the most influential
socio-economic and sectoral factors. Scenario simulations will
be used to assess the potential impact of policy or technological
interventions; for example, modeling the effects of a 10% GDP
increase combined with a 5% reduction in coal-related emissions
to estimate projected changes in CO- output. The methodology
also includes generating visual outputs such as predicted-versus-
actual plots, feature importance charts, and emission time series
to facilitate interpretation and support evidence-based climate
policy planning. This structured approach is intended to deliver
both predictive capability and actionable insights for emission
reduction strategies.

Result

This section presents the results of the machine learning models
developed to predict and analyze CO: and CHa4 emissions,
highlighting their accuracy, feature importance, and predictive
reliability. The findings provide key insights into the most
influential emission sources, guiding targeted reduction strategies.

sy ey
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Figure 4: Time Series Trends of CO: Emissions for the Top Five Emitting
Countries

Figure 4 show the CO: emission trends from 1990 to 2018 for
the five highest emitting countries, highlighting critical patterns
relevant to the application of machine learning in predicting and
optimizing COz and CH4 emission reduction potential. China shows
a sharp and sustained increase in emissions, surpassing all other
nations after the early 2000s, largely due to rapid industrialization
and coal dependent energy production. The United States maintains
relatively high but stable emissions with a slight decline after 2007,
reflecting economic shifts and the adoption of cleaner energy
technologies. India’s emissions display a steady upward trajectory,
indicating growing industrial and energy demands, while Russia’s
emissions dropped significantly after the early 1990s economic
transition and have since stabilized. Japan exhibits relatively flat
emission levels with minor fluctuations. These distinct national
trends underscore the importance of country-specific modeling
and optimization strategies, as emission drivers and reduction
opportunities vary significantly across economic, industrial, and
energy contexts.
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Figure 5: Correlation Heatmap of Socio-Economic and Sectoral Factors with
CO: and CHy Emissions

Figure 5 shows the correlation heatmap in this study, focused on
the application of machine learning to enhance the prediction and
optimization of CO2 and CH4 emission reduction potential, reveals
significant relationships between socio-economic indicators,
sectoral emission sources, and greenhouse gas outputs. CO- total
emissions exhibit strong positive correlations with GDP (0.94),
coal related emissions (0.95), and oil-related emissions (0.94),
indicating that economic growth and fossil fuel consumption are
major drivers of CO: output.

Similarly, CHs emissions show high correlations with population
(0.84), N2O emissions (0.92), and other emission types, reflecting
the interconnected nature of greenhouse gas emissions and
demographic factors. These relationships suggest that changes
in one emission source or socio-economic factor can influence
multiple greenhouse gases simultaneously.

Understanding these correlations is critical for developing robust
multivariate machine learning models capable of capturing such
interdependencies. This insight enables the model to identify high-
impact areas for intervention, thereby supporting the design of
more effective, data-driven policies and technological measures
aimed at reducing both CO. and CH4 emissions.
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Figure 6: Feature Importance Rankings for CO: Emissions Prediction using
Random Forest Regression.

Figure 6 show the feature importance analysis for CO2 emissions
prediction shows that Emissions.Production.CO..Other, Emissions.
Production.CO-.0il, and Emissions.Production.CO:.Coal are
the most influential variables, together contributing over 75%
of the model’s predictive power. GDP and N-O emissions also
have moderate influence, while factors such as population, gas,
and flaring emissions have minimal impact. This indicates that
sector-specific CO: sources dominate the prediction of total CO-
emissions.
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Figure 7: Feature Importance Rankings for CH+ Emissions Prediction using
Random Forest Regression

Figure 7 show the feature importance analysis for CHa
emissions prediction indicates that Emissions.Production.CH4
overwhelmingly dominates the model’s predictive capability,
contributing over 90% of the total importance score. This result
reflects the direct and expected relationship between the target
variable and its own recorded production values, suggesting that
historical CH4 emission data is the primary driver in forecasting
future values.

Other features, such as Emissions.Production.CO2.Flaring,
Emissions.Production.CO2.Coal, and Emissions.Production.
C02.0ther, show only minimal influence on CHa predictions,
contributing marginally to the overall model performance. These
minor contributions likely capture indirect correlations where
certain COz-producing activities may also emit small quantities
of CHa, for example, through industrial processes or incomplete
combustion of fossil fuels.

Socio-economic factors, including GDP and population, as well as
other CO: sector emissions (oil, gas, and cement), have negligible
importance in this model. This suggests that CH4 emissions are
largely independent of broader economic indicators and are instead
strongly tied to direct measurement values. Consequently, the
model’s predictions for CHa are highly precise but heavily reliant
on the availability and accuracy of historical CH4 emission data.
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Figure 8: Permutation Importance of Features for Predicting CO: Emissions.

Figure 8 illustrates the relative importance of different features
in predicting CHa emissions, within the framework of applying
machine learning to enhance the prediction and optimization of
CO: and CHa4 emission reduction potential. The analysis reveals
that Emissions.Production.CH4 is by far the most influential
predictor, accounting for the vast majority of the model’s
explanatory power. This dominance underscores the direct
dependency of the prediction on historical CHa4 production data.

Other features, such as CO: emissions from flaring, coal
production, and other CO: sources, contribute only marginally
to the predictive model, indicating limited but possible indirect
correlations between these activities and CH4 emissions. These
smaller influences may reflect overlapping processes in energy
production and industrial activities where both CO and CHa are
released simultaneously.

Socio-economic indicators, including GDP and population, along
with other CO:-related sectors such as oil, gas, and cement, exhibit
negligible predictive importance. This suggests that, unlike CO-
emissions, CH4 levels are less driven by broad economic factors
and more directly tied to sector-specific processes. Such insights
allow for more targeted methane reduction strategies, focusing
on direct CH4 emission sources rather than broad economic or
indirect contributors.
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Figure 9: Model Performance: Actual vs. Predicted CO: Emissions

As shown in figure 9 the scatter plot compares model predicted
CO: emissions with observed values; points lie tightly around
the red 1:1 line, indicating an excellent fit across the full range of
emissions. This visual agreement is consistent with the quantitative
metrics (R?~0.997 and RMSE = 53.69), showing that the selected
features and the Random Forest model capture the dominant
drivers of CO: emissions with very small residual error. No clear
curvature or funneling is apparent, so systematic bias (over- or
under-prediction at low/high values) is minimal. A few distant
points likely reflect country-year anomalies, measurement noise,
or patterns underrepresented in training; these merit follow-up
(e.g., data quality checks, adding sectoral context features, or
robust modeling) to further tighten accuracy.

Figure 9 compares the model’s predicted CO- emissions against
the actual observed values, providing an assessment of prediction
accuracy within the study on applying machine learning for
enhanced CO: and CH4 emission reduction potential. The close
alignment of data points along the red dashed 1:1 reference line
indicates that the model achieves a high degree of predictive
accuracy, with minimal deviation between predicted and actual
values. This strong correlation suggests that the selected features
and the trained algorithm effectively capture the underlying

patterns influencing CO- emissions, making the model reliable
for forecasting and optimizing emission reduction strategies.
The few visible outliers may reflect instances of unusual activity
or underrepresented patterns in the dataset, warranting further
investigation for model refinement.

€02 Emissions Model:

Best Parameters: {'max_depth': 3@,

RMSE: 53.689841898414116
R* Score: ©.9971290240843951

‘min_samples_split": 2, 'n_estimators’: 200}

CH4 Emissions Model:

Best Parameters: {'max_depth':
RMSE: 2.57818533@137249

R? Score: ©.9997145782485652

None, ‘min_samples_split’: 2, 'n_estimators’: 3ee}

Figure 10: Model Performance Metrics and Optimal Hyperparameters for CO:
and CHy Emissions Prediction.

The Random Forest Regression model achieved high predictive
accuracy for both CO2 and CHa emissions. For COz, the optimal
parameters were a maximum depth of 30, minimum samples split
of 2, and 200 estimators, resulting in an RMSE of 53.69 and an
R? score of 0.9971, indicating an excellent fit between predicted
and actual values. For CH4, the best model used no limit on tree
depth, a minimum samples split of 2, and 300 estimators, yielding
an RMSE of 2.58 and an R? score 0f 0.9997, reflecting near perfect
predictive performance. These results demonstrate the model’s
robustness and ability to capture complex patterns in emission
data as shown in Figure 10.

Table: Machine Learning Results for CO. and CH4 Emission
Prediction

Figure | Analysis Key Findings Implications

Figure 4 | Time Series | 1. China: sharp increase | Country spe-
Trends of | post-2000 due to indus- | cific emission
CO: Emis- | trialization & coal use. | drivers high-
sions (Top light the need
5 countries, | 2. USA: high but stable, | for tailored
1990-2018) | slight decline post-2007 | reduction strat-

(clean energy adoption). | egies.
3. India: steady rise
(industrial/energy

demand).

4. Russia: drop in

1990s, later stabilized.

5. Japan: flat with minor
fluctuations.

Figure 5 | Correlation | 1. CO: strongly corre- Strong inter-
Heatmap lated with GDP (0.94), | dependencies
(Socio-eco- | coal (0.95), oil (0.94). indicate that
nomic & multivariate
sectoral 2. CHa correlated with ML models
factors population (0.84) & can capture
with CO: & | N20O (0.92). cross gas and
CHa4) socio-economic

effects.

Figure 6 | Feature 1. Top drivers: CO2 Sector specific
Importance | (Other, Oil, Coal) — CO: sources
CO:z (Ran- | >75% of importance. dominate total
dom Forest) emissions pre-

2. Moderate: GDP, N2O. | diction.
3. Minimal: Population,
gas, flaring.
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Figure 7 | Feature 1. CHa production alone | CH4 emissions
Importance | accounts for > 90%. are highly
CHs (Ran- dependent on
dom Forest) | 2. Minor roles: CO- flar- | direct measure-
ing, coal, other sources. | ment data, less
on socio-eco-
3. Negligible: GDP, nomics.
population, oil/gas
sectors.
Figure 8 | Permutation | 1. CHa production over- | Confirms direct
Importance | whelmingly dominant. | dependency on
CHa historical CHa
2. Minor: CO: flaring, values; useful
coal, other sources. for targeted
methane reduc-
3. Negligible: GDP, tion.
population, oil, gas,
cement.
Figure 9 | Model Per- | 1. R?~0.997, RMSE = | Random Forest
formance 53.69. captures main
(CO2: CO:z drivers
Actual vs 2. Predictions tightly with very high
Predicted) | align with observed accuracy.
values.
3. Few anomalies (data
noise, underrepresented
cases).
Figure | Model Per- | 1. CO2 model: Both mod-
10 formance Depth=30, Estimators els show
Metrics & | =200 — R?>=0.9971, exceptional
Hyperpa- RMSE=53.69. robustness &
rameters predictive
2. CHa model: Unlim-
ited depth, Estima-
tors=300 — R?=0.9997,
RMSE=2.58.
Conclusion

This study successfully applied a data-driven machine learning
framework to enhance the prediction and optimization of CO- and
CHa emission reduction potential across multiple countries. Using
Random Forest Regression, the models achieved exceptionally high
predictive accuracy (R?=0.997, RMSE = 53.69), closely aligning
predicted emissions with observed values and demonstrating
minimal systematic bias. Feature importance analysis revealed
that oil, coal, and other CO: sources are the most influential
drivers of total emissions, while GDP and cement production
also play notable roles. Correlation analysis further highlighted
the strong interdependence between greenhouse gas outputs and
socio-economic as well as sectoral factors, underscoring the need
for integrated policy measures.

The novelty of this work lies in combining high resolution
multi sectoral and socio-economic data with advanced machine
learning techniques to simultaneously forecast emissions and
identify priority intervention points. This dual capability allows
not only for accurate prediction but also for targeted scenario
simulation enabling policymakers to test the impact of potential
measures, such as fuel switching or economic adjustments,
before implementation. By bridging predictive accuracy with
actionable insights, this approach provides a robust, scalable, and
evidence-based pathway for accelerating global decarbonization
and methane mitigation strategies.

Funding Declaration

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Author contributions:

Ajayi Abiola Samuel — Conceptualization; Methodology; Data
curation; Machine learning model development; Formal analysis;
Software implementation; Visualization; Writing — original draft;
Project administration; Correspondence; Validation.

Shokenu Emmanuel Segun — Methodology; Statistical analysis;
Data interpretation; Technical review of model framework; Writing
—review & editing.

Ajayi Eniola Isaac — Data preprocessing; Exploratory data
analysis; Feature engineering; Writing — review & editing;
Assistance with figures and tables.

Godwin Theuwa — Literature review; Theoretical framework
support; Critical revision of related works; Writing — review &
editing.

Ayoola David Bodude — Domain expertise on emission sources
and energy processes; Interpretation of results; Validation of
sector-based emission insights; Writing — editing.

Brian Cobb Hanrahan — Oversight and supervision; Industry
insights on energy, acrospace, and emission reduction technologies;
Interpretation and policy relevance analysis; Final manuscript
review.

All authors reviewed and approved the final version of the
manuscript and agree to its submission.

Al statement: The authors stated that generative Al tools
(specifically ChatGPT) were used only for language polishing
and formatting assistance. The authors reviewed and verified all
content to ensure accuracy and integrity of the scientific work.

Reference

Filonchyk, M., Peterson, M. P., Zhang, L., Hurynovich, V. and He,
Y. (2024) ‘Greenhouse gas emissions and global climate
change: Examining the influence of CO-, CH4 and N2O’,
Science of the Total Environment, vol. 935, p. 173359.
doi:10.1016/j.scitotenv.2024.173359.

Pulles, T. and Van Amstel, A. (2010) ‘An overview of non-CO-
greenhouse gases’, Journal of Integrative Environmental
Sciences, vol. 7, no. S1, pp. 3—19. doi:10.1080/194381
5X.2010.505241.

Brander, M. and Davis, G. (2012) ‘Greenhouse gases, CO-,
CO:ze and carbon: What do all these terms mean?’,
Econometrica White Papers, pp. 2-3.

Alagade, A. and Sahu, M. (2025) ‘Satellite-based assessment and
forecasting of greenhouse gas (GHG) concentrations in
Indian megacities using advanced statistical methods’,
Environmental Science and Pollution Research, pp. 1-19.
doi:10.1007/s11356-025-36583-1.

Dang, P., Zhang, M., Chen, X., Loreau, M., Duffy, J. E., Li, X. E.
et al. (2024) ‘Plant diversity decreases greenhouse gas
emissions by increasing soil and plant carbon storage in
terrestrial ecosystems’, Ecology Letters, vol. 27, no. 7,
€14469. doi: 10.1111/ele.14469.

Zhang, Q., Li, J., Li, L. and Yu, J. (2025) ‘Zeolite-based materials
for greenhouse gas capture and conversion’, Science

Page 6/7



Earth Science: Environmental Challenges and Solutions

China Chemistry, vol. 68, no. 5, pp. 1703—-1716. doi:
10.1007/s11426-024-2287-6.

Faraday, E. T. and Oluwabunmi, O. A. (2024) ‘Greenhouse gas
levels (CHa and CO:) in Lagos State and Oyo State,
Nigeria’, Discover Environment, vol. 2, no. 1, p. 4.
doi:10.1007/s44274-023-00026-w.

Zhang, X., Huang, T., Shan, T., Yuan, Q., Li, J., Wu, Q. and
Zhang, P. (2024) ‘A comprehensive review of molecular
dynamics simulation on the replacement characteristics
and mechanism of CO>—CHa4 hydrate in porous media
systems’, Greenhouse Gases: Science and Technology,
vol. 14, no. 4, pp. 695-710. doi:10.1002/ghg.2292.

Wu, G, Feng, G., Li, Y., Ling, T., Peng, X., Su, Z. and Zhao,
X. (2024) ‘A review of thermal energy management of
diesel exhaust after-treatment systems technology and
efficiency enhancement approaches’, Energies, vol. 17,
no. 3, p. 584. doi:10.3390/en17030584.

Bakhchin, D., Ravi, R., Douadi, O., Faqir, M. and Essadiqi, E.
(2024) ‘Integrated catalytic systems for simultaneous
NOy and PM reduction: A comprehensive evaluation of
synergistic performance and combustion waste energy
utilization’, Environmental Science and Pollution
Research, vol. 31, no. 34, pp. 46840-46857. doi:10.1007/
s11356-024-34287-6.

Li, T., Yue, X. G., Qin, M. and Norena-Chavez, D. (2024) ‘Towards
Paris Climate Agreement goals: The essential role of
green finance and green technology’, Energy Economics,
vol. 129, p. 107273. doi:10.1016/j.enec0.2023.107273.

Kreibich, N. (2024) ‘Toward global net zero: The voluntary
carbon market on its quest to find its place in the post-
Paris climate regime’, Wiley Interdisciplinary Reviews:
Climate Change, vol. 15, no. 5, ¢892. doi:10.1002/
wce.892.

Park, S., Moon, K.-J., Eom, H.-J., Yi, S.-M., Kim, Y., Kim, M.,
Rim, D. and Lee, Y. S. (2025) ‘Machine learning-based
prediction of ambient CO. and CH4 concentrations
with high temporal resolution in Seoul metropolitan
area’, Environmental Pollution, vol. 345, p. 126362.
doi:10.1016/j.envpol.2025.126362.

Essamlali, I., Nhaila, H. and El Khaili, M. (2024) ‘Supervised
machine learning approaches for predicting key pollutants
and for the sustainable enhancement of urban air quality:
A systematic review’, Sustainability, vol. 16, no. 3, p.
976. doi:10.3390/su16030976.

Hua, J., Wang, R., Hu, Y., Chen, Z., Chen, L., Osman, A. I,
Farghali, M., Huang, L., Feng, J., Wang, J., Zhang, X.,
Zhou, X. and Yap, P.-S. (2025) Artificial intelligence
for calculating and predicting building carbon emissions:
A review’, Environmental Chemistry Letters, vol. 23,
no. 3, pp. 783-816. doi:10.1007/s10311-024-01799-z.

Du, X., Khan, M. N. and Thakur, G. C. (2025) ‘Machine learning
in carbon capture, utilization, storage, and transportation:
A review of applications in greenhouse gas emissions
reduction’, Processes, vol. 13,n0.4, p. 1160. doi:10.3390/
pr13041160.

Gan, N. and Zhao, S. (2024) ‘Global greenhouse gas reduction
forecasting via machine learning model in the scenario
of energy transition’, Journal of Environmental
Management, vol. 371, p. 123309. doi:10.1016/;.
jenvman.2024.123309.

Shafaghat, A. (2025) ‘Enhancing carbon capture and CO: reduction
processes using machine learning and Al technologies

to improve biomedical outcomes’, Metallurgical and
Materials Engineering, vol. 31, no. 2, pp. 129-146.
doi:10.63278/mme.v31i2.1851.

Kothale, A. and Sadgir, P. (2025) ‘Application of artificial
intelligence and machine learning with international
guidelines for greenhouse gas reduction in wastewater
treatment’, International Journal of Environmental
Science and Technology, pp. 1-19. doi:10.1007/s13762-
025-06651-7.

Ojadi, J. O., Onukwulu, E., Odionu, C. and Owulade, O. (2023)
‘Al-driven predictive analytics for carbon emission
reduction in industrial manufacturing: A machine learning
approach to sustainable production’, International
Journal of Multidisciplinary Research and Growth
Evaluation, vol. 4, no. 1, pp. 948-960. doi:10.54660/
IJMRGE.2023.4.1.948-960.

Xue, H., Wang, G., Gui, X., Gong, H., Li, X. and Du, F. (2024)
‘A novel multidimensional hybrid machine learning
model for CO: injection to separate coalbed methane:
Comprehensive prediction of methane diffusion rate,
production volume, and CO: sequestration’, Energy &
Fuels, vol. 38, no. 18, pp. 17525-17540. doi:10.1021/
acs.energyfuels.4c02621.

Xue, H., Wang, G., Li, X. and Du, F. (2024) ‘Predictive combination
model for CHa separation and CO: sequestration with
CO: injection into coal seams: VMD-STA-BiLSTM-
ELM hybrid neural network modeling’, Energy, vol. 313,
p. 133744. doi:10.1016/j.energy.2024.133744.

Ehinmowo, A. B., Nwaneri, B. I. and Olaide, J. O. (2025)
‘Predictive modeling of hydrogen production and
methane conversion from biomass-derived methane
using machine learning and optimisation techniques’,
Next Energy, vol. 7, p. 100229. doi:10.1016/j.
nxener.2024.100229.

Wang, H., Li, Y., Xuan, X., Wang, K., Yao, Y. F. and Pan, L.
(2025) ‘Machine learning accelerated discovery of
covalent organic frameworks for environmental and
energy applications’, Environmental Science and
Technology, vol. 59, no. 13, pp. 6361-6378. doi:10.1021/
acs.est.5¢00390.

Zhang, D. and Feng, E. (2024) ‘Quantitative assessment of
regional carbon neutrality policy synergies based on deep
learning’, Journal of Advanced Computing Systems, vol.
4, no. 10, pp. 38-54. doi:10.69987/JACS.2024.41004.

Ajayi, A. S., Kim, S. and Yun, R. (2024) ‘Study of developing a
condensation heat transfer coefficient and pressure drop
model for whole reduced pressure ranges’, International
Journal of Air-Conditioning and Refrigeration, vol. 32,
p. 15. doi:10.1007/544189-024-00060-0.

Kim, Y., Samuel, A. A. and Yun, R. (2023) ‘Development of
condensation heat transfer coefficient and pressure drop
model applicable to a full range of reduced pressures’,
Korean Journal of Air-Conditioning and Refrigeration
Engineering, vol. 35, no. 11, pp. 557-565. doi:10.6110/
KJACR.2023.35.11.557.

Ehiziojie, L., Adebara, O. A., Okoro, U. D., Ajayi, S. and Adeloye,
K. (2024) ‘Mitigating the impact of scope change on
project cost performance in the global oil and gas
industry: Innovative strategies and sustainable solutions
from the Nigerian experience’, in World Conference on
Future Innovations and Sustainable Solutions. Futurity
Research Publishing. doi:10.5281/zenodo.13993544.

m Copyright: ©2025 Ajayi, A. S., Shokenu, E. S., Ajayi, E. I, Theuwa, G., Ayoola, D. B., Hanrahan, B. C & Isaac, N. This is an

open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited. To view a copy of this licence, visit https://creativecommons.

org/licenses/by/4.0/

Page 7/7



