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Abstract

An ischemic stroke occurs when the blood supply to cerebral region is obstructed, resulting in severe neuroinfl ammation and neuronal 
damage. Ischemic stroke is one of the leading causes of death and permanent disability worldwide. The receptors expressed on the surface 
of immune cells play a critical role in pathogenesis and recovery during and after cerebral ischemia. Important receptors of the innate 
and adaptive immune system like Pattern Recognition receptors, T cell Receptors and others for various ligands released by damaged 
brain cells initiate neuroinfl ammation, orchestrate infl ammatory cascades and channelize diverse molecular pathways, thereby infl uencing 
neuroprotection and post stroke recovery. This review highlights important roles of these immune receptors in cerebral ischemia, focusing 
on their involvement in recognizing molecular patterns associated with cellular damage, modulating neuroinfl ammation and infl uencing the 
equilibrium between infl ammatory tissue damage and recovery. Additionally, the review also focusses on various strategies by which these 
receptors can be targeted for the development of novel stroke therapeutics. Since there is a scarcity of treatments available in the market 
for stroke patients, understanding the multifaceted role of these receptors may help in developing novel and potential stroke therapeutics.
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Introduction

Stroke is a critical biomedical condition resulting in interruption 
of blood supply, preventing it from receiving necessary oxygen 
and nutrients. It is one of the leading causes of death, disability 
and cognitive impairment worldwide1,2 and it remains the second 
leading cause of death.3 The mortality rate of stroke increased 
from 38.8 per 100,000 in 2020 to 41.1 per 100,000 in 20214 and 
in India, 1.8 million people are aff ected by stroke every year.5 The 
fi nancial burden of stroke treatment and post-stroke care is massive 
and is expected to rise to 184.1 billion USD in the year 2030, 
according to the American Stroke Association.6 Unfortunately, due 
to restricted medical access, high cost and very limited capacity 
of regeneration within the Central Nervous System (CNS), there 
is no such eff ective treatment for stroke other than reperfusion 
therapy till date. Early detection and treatment are crucial as the 
number of stroke cases is rising at an alarming rate.7

1.1. Neuroinfl ammation in Ischemic Stroke:

Ischemic stroke is caused by a defi ciency of oxygen, lipids 
and glucose in the brain due to an arterial embolism, resulting 
in the production of oxidative stress, excitotoxicity and 
neuroinfl ammation.8–10 Damage to neuronal cells due to this 
defi ciency causes excessive release of glutamate that activates 
N-methyl D-aspartic Acid (NMDA) receptors and leads to a Ca2+ 
infl ux into the cells, causing cell death.11 These damaged neurons 
and astrocytes then release Reactive Oxygen Species (ROS) that 
deplete glutathione, thereby inducing a more rapid tissue injury 
and death. Neuroinfl ammation results in the activation of the 
immune system in response to ischemic insult and involves various 
immune cells, immune receptors, and molecular mediators causing 
increased infarct size leading to worse neurological outcomes.12 
The Stroke Roundtable Consortium proposed to designate the 
fi rst 24 hours as the hyperacute phase, the fi rst 7 days as the acute 
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phase, the first 3 months as the early sub-acute phase, the months 
4–6 as the late sub-acute phase, and from 6 months onwards as 
the chronic phase.13

1.2. Role of the Immune System in stroke:

The innate immune system acts as the first line of defence in 
response to tissue injury. Upon disruption of blood flow to the 
brain, tissue of the affected area becomes hypoxic and dies, 
resulting in the release of certain molecules called Damage 
Associated Molecular Patterns (DAMPs). It also activates resident 
microglial cells that are responsible for immune surveillance in 
the brain14 that polarize into the pro-inflammatory phenotypes 
and bind the DAMPS via PRRs. One such PRR are Toll-like 
Receptors (TLRs) that release many pro-inflammatory cytokines. 
This activation further recruits other innate immune cells such 
as neutrophils, monocytes, dendritic cells, lymphocytes and 
macrophages. Activation of the innate immune cascade also 
activates the adaptive immune system. This adaptive immune 
response retains immunological memory and plays a potent 
role in the recovery phase of stroke.15,16 Since many therapeutic 
interventions primarily emphasises on these receptors as potential 
targets, a comprehensive study of the immune receptors involved 
in the pathogenesis and recovery of ischemic stroke is crucial.

Immune Receptors

A cell surface receptor binds to ligands such as hormones and 
neurotransmitters, induce a conformational change, relaying the 
signal to the target cell, that elucidates an appropriate response. 
Among many receptors found on the surface of numerous cell 
types in the human body, the immune receptors expressed on the 
immune cells are most characterized till date due to their potential 
role in immunity-related diseases and therefore, are highly targeted 
for use in Stroke therapeutics.17

2.1. Types of Immune Receptors:

Receptors of the innate immune system generally orchestrate an 
inflammatory response whereas those of the adaptive immune 
system are involved in anti-inflammation, antigen presentation 
and memory. Innate immune cells such as microglia, astrocytes, 
monocytes, etc., possess various receptors that recognize neuronal 
damage induced DAMPs such as Adenosine Triphosphate (ATP), 
High Mobility Group Box Protein – 1 (HMGB1) and Heat Shock 
proteins. Apart from these, there are other components of the 
immune system such as complements and Fc receptors binding 
to Immunoglobulins that play a significant role in the progression 
of Ischemic stroke.18,19

The receptors of immune system are classified into following 
types:

2.1.1. Receptors of the innate immune system:

Among the receptors of the innate immune system some of the 
most important ones are Pattern Recognition Receptors (PRRs), 
Phagocytic receptors and Chemotactic receptors.

2.1.1.1. Pattern Recognition Receptors:

Various Heat Shock Proteins (HSPs) (HSP60 and 70) and 
fibronectin released by neurons post stroke acts as DAMPs and 
activate the innate immune system via various PRRs thereby 
inducing an intense proinflammatory response.16 PRRs are divided 
into the following five types: TLRs, NLRs, RLRs, CLRs and 
ALRs. They are not only found in the plasma membrane but also 

in the intracellular component’s membrane and the cytoplasm.14 
Fig.1 shows the role of crucial PRRs in Ischemic stroke and their 
ligands.

Some of the important PRRs and their role are as follows:

A. Toll Like Receptors (TLRs):

TLRs are a group of evolutionarily conserved transmembrane 
receptor proteins. Previously, TLRs were known to recognize 
microbial pathogens via Pathogen Associated Molecular Patterns 
(PAMPs). Different types of TLRs include TLR1, TLR2, TLR4, 
TLR5 and TLR6. That are expressed on the plasma membrane and 
TLR3, TLR7, TLR8 and TLR9 that are expressed on endosomes.20 

They are also found in brain cells including microglia, neural stem 
cells, neurons, oligodendrocytes and astrocytes. Upon binding to 
adaptor molecules, TLRs activate two different pathways, i.e., the 
Myeloid differentiation primary response 88 (MyD88)-dependent 
pathway and the TIR domain-containing adaptor inducing 
interferon-β (TRIF)-dependent pathway.21–23 Activation of TLRs 
following an Ischemic insult also activates various downstream 
signalling pathways which may be destructive or neuroprotective 
depending on the timing, localization and intensity of receptor 
activation.

TLR2 and TLR4 are the main receptors that are activated post 
ischemic insult. In a study involving 110 stroke patients, the levels 
of TLR2 and TLR4 were analysed at 24 hours, 72 hours and 7 
days. Their increased expression was associated with increased 
levels of IL-1β, IL-6, TNF-α and VCAM-1.24 It was found that 
TLR2 was the most significantly upregulated TLR among all 
TLRs and is involved in exacerbating the brain damage post 
ischemia. TLR2 suppression improved neuronal recovery and 
reduced infarct size.25,26

Zhou et al showed that a neuroprotectant called Tetrahedral 
Framework Nucleic Acids (tFNAs) protected neurons from 
apoptosis after oxygen and glucose deprivation (OGD) in in vitro 
and reduced the infarct volume from 33.9% to 2.7% in Middle 
Carotid Artery Occlusion (MCAO) rat models through the TLR2/
Myd88/NFkb pathway.27 Similarly, binding of High Mobility 
Group Box 1 (HMGB1) to TLR4 causes the infiltration of immune 
cells via increased Blood Brain Barrier (BBB) permeability. After 
the injection of neutralizing anti-HMGB1 antibodies, microglia 
activation and BBB permeability were reduced.28 Polyphenols 
have also been found to suppress inflammatory response and 
promote neuronal recovery through the TLR4 pathway.29

Recently, TLR preconditioning has been associated with reduced 
ischemia injury. In an MCAO model, reduction in ischemic injury 
was found to have occurred partially through TLR4.30 In similar 
studies, a low dose of various TLR ligands had reduced infarct 
size prior to stroke.31-35 Interestingly, Interferon Regulatory Factors 
(IRF3 and IRF7) were found to be mediated through TLR4 and 
TLR9 preconditioning.36 Moreover, Lipopolysaccharide (LPS) 
preconditioning also induced high levels of interferon (IFN-β) 
in the brain through TLR4.37

A group of researchers preconditioned mesenchymal stem cells 
with lithium and isolated the extracellular vesicles (Li-EVs). Upon 
injecting these into MCAO mice, a downregulation of TLR4 was 
observed with increased Micro RNA (miR-1906) (a modulator of 
TLR4) and decreased Nitric Oxide (NO) synthase and Nuclear 
Factor kappa (Nf-kb) activity, reducing cerebral inflammation.38 
Therefore, pre-conditioning shifts the brain’s response from an 
inflammatory to a neuro protective state, paving the way to target 
neuro protective proteins as therapeutics.
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Various DAMPs of TLRs:

Some of the most important ligands that are associated with TLRs 
are as follows.

• ATP:

Following ischemia, Adenosine Triphosphate (ATP) is released 
uncontrollably in the interstitial space through cell damage. Upon 
their release, ATP molecules activate Purinergic Receptors (P2X 
or P2Y). Of the seven members of the P2X family, P2X1, P2X4 
and P2X7 are functional in Ischemia and are highly expressed 
on microglial cells.39 P2X1 is expressed on both platelets and 
neutrophils, thereby promoting platelet aggregation and neutrophil 
chemotaxis to the site of ischemic insult40,41 P2X4 shows sustained 
activation on brain immune cells that contributes to ischemic 
injury and are also expressed on T cells leading to T cell activation 
and chemotaxis.42,43 Many P2X4 agonists have been developed 
that has shown to reduce brain damage after stroke providing 
a therapeutic approach and it has also been found to be highly 
expressed in female mice proving there may be sex difference in 
its expression.44 

The P2Y family of receptors are activated by Adenosine 
Diphosphate (ADP) and ATP. P2Y12 and P2Y13 are the most 
abundantly expressed in microglial cells. Binding of ADP to 
these receptors reduce cyclic Adenosine Monophosphate (cAMP) 
via inhibition of adenylate cyclase thereby activating microglia. 
They also activate P2Y1 receptors expressed on astrocytes.45  
P2Y2 and P2Y11receptors that induce monocyte and neutrophil 
migration.46,47

Ectonucleotidases are membrane proteins that are catalytic in nature 
and hydrolyse high levels of ATP in the inflammatory and ischemic 
environment into AMP, that acts as an immunosuppressant.48 
Cluster Differentiation proteins (CD38, CD39, CD73) and 
Ectonucleotide Pyrophosphatase/Phosphodiesterase-1 (ENPP1) 
plays a significant role in the pathophysiology of stroke. CD38 
expression is highest on astrocytes and endothelial cells. 
Nicotinamide Adenine Dinucleotide (NAD) have strong anti-
inflammatory and neuroprotective properties in stroke and has 
also been found to increase with aging; hence, there might be a 
link between aging and stroke that is relevant to CD38 expression, 
making it a potential target for stroke therapeutics.49 CD39 is 
highly expressed on microglial cells and endothelial cells.50 It 
was found to inhibit platelet recruitment and aggregation at the 
site of ischemic insult.51 CD73 is highly expressed on B, T cells, 
macrophages and neutrophils whereas ENPP1 is expressed on 
microglia.50 There are contradicting results regarding the role 
of CD73 in Ischemic stroke since their expression is absent on 
endothelial cells in mice and most of the studies are conducted 
on different experimental models of mice.52 Within 20 minutes 
of stroke onset, most of the adenosine produced from ATP is 
mediated by CD73. Treg cells co-express both CD38 and CD73 
and therefore, the adenosine produced by their co-ordinated 
activity promote their own immunosuppressive state.53 CD73 
also regulates Helper 17 (Th17) responses.54

During ischemia, adenosine is continuously secreted into the 
extracellular space. When the mitochondria consume ATP, it 
is converted to AMP. This AMP can’t be reconverted to ATP 
due to lack of glucose and oxygen. Thus, ATP levels decrease 
leading to an accumulation of adenosine that is formed from 
AMP.55 Four main receptors for adenosine differ in their affinity 
and location: A1, A2A, A2B and A3. These are G-protein coupled 
receptors and signals mainly through Phospholipase C (PLC), 

calcium and Mitogen-Activated Protein Kinase (MAP) pathways.56 
In normal physiological conditions, adenosine activates high-
affinity receptors A1 and A2A while during ischemia, they activate 
the low-affinity receptors A2B and A3.

57 A1 receptor expression is 
evenly distributed across neurons in all areas of the brain whereas 
A2A expression is the highest in endothelial cells, astrocytes and 
lymphocytes. A2B expression is highest in CNS and A3 is found 
in microglia and hippocampal neurons. Once, A1R is activated, it 
inhibits glutamate synaptic transmission, which is important for the 
recovery of circuits in hippocampus upon reoxygenation while A2A 
signalling leads to an increase in glutamate excitotoxicity, thereby 
both receptors exhibit counteracting effects.58 A2A also mediates 
their effects on microglia converting their shape to amoeboid and 
regulate their phagocytic properties. A2B is found to have a dual 
role where it influences mast cells to release pro-inflammatory 
cytokines and influences dendritic cells and macrophages towards 
an anti-inflammatory state. A3 Receptor activation during Ischemia 
is mainly found to have a damaging effect on cells and tissues.59 P2 
receptor inhibitors are being considered as therapeutic targets. In 
a study where Pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic 
acid (PPADS) was injected 15 minutes prior to the surgery for up 
to 7 days and functional improvements were assessed after 28th 
day revealed a reduced infarct volume and recovery of motor 
impairments.60

• Heat Shock proteins (HSPs):

Heat Shock Proteins are molecular chaperones, participating in 
protein–protein interactions especially in the folding, assembly and 
translocation of intracellular proteins. Under stressful conditions, 
the intracellular concentration of HSPs increases. The role of 
HSPs in haemorrhagic stroke has already been studied in detail.61 
HSP70 is the most studied HSP protein in neuroprotection and 
is robustly produced during ischemia. Palanisami et al suggested 
that HSPs may be used as anti-stroke therapeutic molecules.62 
HSP70 promotes cell survival by suppressing the production 
of inflammatory cytokines. In one study, intranasal injection of 
recombinant HSP70 in mouse, significantly reduced the infract 
volume in PFC.63 A Single Nucleotide Polymorphism (SNP) 
rs11682567 in HSP60 gene was associated with an increased 
risk of ischemic stroke.64 HSP90 was also found to attenuate 
ischemia by acting through the complements C3 and C5a and 
Nf-κβsignalling.65

• High Mobility Group Box Protein1 (HMGB1):

HMGB1 binds to TLR2 and 4 and acts through Myd88 dependent 
pathway leading to the formation of monocyte-platelet complex, 
thereby promoting thrombosis. Initially, non-acetylated forms 
of HMGB1 are released following infarction where it reaches 
its peak concentration within 24 hours. A continuous release of 
immune cells prompts the release of acetylated forms of HMGB1 
that reaches peak concentration in about 6 days post stroke.66 In a 
study involving 132 patients, the HMGB1 levels were measured, 
and its increased expression was found to be directly related to 
poor stroke prognosis.67 Similarly, a total of 154 Acute Ischemic 
Stroke (AIS) patients were followed up monthly for 43 months 
to measure the levels of HMGB1 until the subsequent stroke 
recurrence which revealed that elevated levels of HMGB1 was a 
predictive indicator of AIS recurrence.68 It was also found to be 
elevated in post-stroke depression patients.69 In contrast, 1066 
acute stroke patients were analysed for The Receptor for Advanced 
Glycation End Products (RAGE) and HMGB1 polymorphisms 
and found no association between HMGB1 levels and ischemic 
stroke risk.70
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HMGB1 mediates its mechanistic action by binding to TLR2, 
TLR4 and RAGE influencing BBB disruption and haemorrhagic 
transformation. It also promotes Metalloproteinase protein 
(MMP9) activation, oligodendrocyte migration and neurovascular 
remodelling by binding to these receptors. HMGB1 also mediates 
its effects through the activation of NLRP3, cytochrome c oxidase 
subunit 2, NOS, IL-1β and promotes neuronal cell death.71 In 
a study, GA-boronated ester-conjugated diethylaminomethyl-
dextran polymer-drug conjugate nanoparticles (an inhibitor of 
HMGB1) were used in stroke-affected mice to evaluate their 
efficacy in stroke recovery. Administration of the nano particles 
showed significant reduction in infract volume, upregulation of 
neurogenesis and polarisation of microglia to M2 phenotype.72

• Hyaluronan:

Hyaluronan binds to TLR4, and its activation is mediated 
through HA receptors CD44 and the Receptor for Hyaluronan-
Mediated Motility (RHAMM). It is a crucial component of the 
extracellular matrix and plays an essential role in angiogenesis, 
promoting neuronal survival and micro vessel formation.73 CD44 
and RHAMM are expressed on various cell types in the brain. 
CD44 is present in microglia after an ischemic stroke with its 
expression upregulated post-stroke in the infarct area, thereby 
enhancing inflammatory effects.74 RHAMM is expressed in a 
subset of neurons and oligodendrocytes, mediating its function 
intracellularly and acting as a receptor influencing cell migration 
and growth.75 Following ischemia, RHAMM is found to be 
expressed on astrocytes in the periinfarct area.76

A study discovered that the expression of CD44 and Tumour 
Necrosis Factor (TNF)-stimulated gene/protein 6 (TSG-6) is 
elevated in infiltrating mononuclear cells. TSG-6 appears to play 
a significant role in tissue remodelling following a stroke. In mice 
post-MCAO, CD44 was shown to be present in stem cells and 
microglia, contributing to the brain repair process by inhibiting 
IL-1β production and decreasing infarct size by over 50%.77 
Likewise, RHAMM was expressed in neuroblast stem cells in 
the mouse subventricular zone (SVZ) and the rostral migratory 
stream (RMS), suggesting Hyaluronan-mediated migration of stem 
cells in these regions.78 After ischemia, its expression increased 
in the peri-infarct neurons and micro vessels of stroke patients. 
This enhanced expression is associated with increased calmodulin 
signalling, promoting angiogenesis and mitosis.79 Hyaluronan 
exists in High-Molecular-Weight (HMW) and Low-Molecular-
Weight (LMW) forms. HMW HA binds to CD44 and blocks 
TLR4 activation on microglia that are induced by the binding 
of LMW HA. Thus, HMW HA is found to be neuroprotective in 
ischemic stroke.80

B. Nod like receptors (NLRs):

The inflammasome is a multi-protein complex involved in 
sensing DAMPs and PAMPs, the activation of which leads to 
the production of IL-1β and IL-18. There are four subtypes of the 
NLR family based on their amino-terminal domain: NLR1, NLRB, 
NLRP and NLRC. Except NLRP1, NLRP3, NLRP12, other NLR 
protein complexes are involved in the recognition of pathogenic 
ligands.81 The pro-inflammatory cytokine IL-1β has a profound 
deleterious effect on brain damage during stroke. NLRP3 is also 
seen to be increased in mouse cortical neural cells in in vitro and 
in vivo models of ischemic stroke.82 Recently, NLRP2 has been 
found to be expressed in the astrocytes of the CNS and is elevated 
in Ischemic Stroke. In a study involving 60 AIS patients and 30 
control groups, the serum levels of NLRP3 and its downstream 
signalling mediators like IL-18, IL-1β and TNF-α were increased 

at 24 hours. Also, the levels remained higher in the poor prognosis 
group as compared to the healthy group.83

Bruton’s Tyrosine Kinase (BTK) is involved in the phosphorylation 
of ASC and redistribution of macrophages influencing NLRP3 
inflammasome activation and IL-1β production. Therefore, 
inhibition of BTK can lead to an impaired activation of NLRP3.84 

Moreover, BTK was found to perform as a platform protein for 
ASC and NLRP3 where BTK is initially activated by DAMP 
binding, and it interacts with ASC; Nigerecin (a NLP3 activator) 
induces the recruitment of NLRP3 to this BTK–ASC complex. 
Administration of Ibrutinibis is known to suppress the NLRP3 
activation and signalling pathway. Thioredoxin-interacting protein 
(TXNIP) is a crucial regulator of oxidative stress, cellular injury 
and a glucose sensor.85 To investigate its role in stroke and diabetes, 
mice were induced with hyperglycaemia and embolic MCAo 
(eMCAo) was performed after which molecular parameters were 
investigated. The expression of TXNIP and NLRP3 were found 
to be upregulated in Hyperglycaemic mice compared to normal 
mice suggesting their role in BBB permeability and neuronal 
damage. On treatment with tPA, the NLRP3 activation was slightly 
reduced.86

Therapeutically, the anti-inflammatory activity of Ligustroflavone, 
a compound derived from Ligustrum lucidum, was assessed in a 
MCAO model of mice by measuring the levels of NLRP1 and its 
inflammatory cytokines. It was found that the compound inhibited 
NLRP1 activity.87 In another study, the miRNA miR-9a-5p was 
found to attenuate Ischemic stroke through NLRP1 whereas 
overexpression of miR-9a-5p decreased the NLRP1 expression 
in MCAO rats and OGD cells.88

C. C-Type Lectin Receptors (CLRs):

C-Type Lectin Receptors are dysregulated during excessive tissue 
injury that leads to development of inflammatory diseases.89 There 
are many CLR subtypes out of which only MINCLE is found 
to be involved in the pathogenesis of stroke, whereas DC NK 
lectin group receptor-1 (DNGR1) promotes disease progression 
in atherosclerosis.90 MINCLE is found to induce an inflammatory 
response, reperfusion in experimental ischemic stroke and is found 
in Ischemic brains.91,92 Its ligand Secreted Aspartyl Proteinases 
(SAP10) and its downstream signalling molecule Spleen Tyrosine 
Kinase (Syk) are all upregulated in Ischemia.

D. RIG like Receptors (RLRs):

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) 
are key sensors of virus infection, mediating the transcriptional 
induction of type I interferons and other genes that collectively 
establish an antiviral host response.96 Recently, it has been found 
that RLRs are elevated in the cortex of Alzheimer’s patients and 
contribute to the inflammatory response post spinal cord injury.97 

Frank et al., alone analyzed Retinoic Acid Inducible Gene -1 (RIG-
1) and IFN-α in the hippocampus of MCAo rats and found that 
both show an increase in astrocytes, indicating their significant 
role in innate immune response. It has been shown that RLR and 
IFN signalling possess anti-inflammatory effects.98

E. Absent in Melanoma like Receptors (ALRs):

AIM2 inflammasome, a multiprotein complex, plays a crucial 
role in the inflammatory response and contributes to brain injury 
by triggering cell pyroptosis and increasing blood-brain barrier 
permeability by forming AIM-2 inflammasome.99 The role of ALR 
in other diseases such as Alzheimer’s100 and cancer have been 
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studied previously, but their role in ischemic stroke has only been 
studied recently. AIM2 protein has been found in the blood clots of 
patients who had acute stroke and underwent thrombectomy.101 The 
AIM-2 inflammasome and its downstream signalling molecules are 
increased in neuronal cell lines such as astrocytes, microglia, and 
human Neuroblastoma.102 Therapeutically, three AIM-2 inhibitors 
that were found to confer neuroprotection in Ischemic stroke are 
cGMP-AMP synthase (cGAS) antagonist A151, miR-485 and 
the selective inhibitor of histone deacetylase 3 (HDAC3).103-105

Fig.1: Role of Innate immune receptors in Ischemic stroke. DAMPs upon 
binding to TLR2 and TLR4, activate the Myd88 and TRIF-dependent pathways 
respectively and produce increased levels of IL-6, TNF-α, VCAM-1 and IRF-
3. TLR7, TLR3 and TLR9 secrete IRF3 and IRF7. CLEC-2 is involved in the 
activation of platelets, thereby increasing BBB permeability. Mincle activates 
Syk signalling pathway that is also contributing to BBB breakdown. Activation 
of RLR and ALR induces the production of IFNα. NLRP10 suppresses the 
activation of TLR pathway and NLRP3 secretes IL-1β and IL-18, increasing 
BBB permeability. These inflammatory mediators collectively exacerbate brain 
damage during Ischemic stroke.

2.1.1.2. Phagocytic Receptors:

Neutrophils, Monocytes and Dendritic cells are phagocytic cells 
that engulf damaged cells in the phagosome and initiate lysis 
via lysosomes. This process takes place through a variety of 
receptors on the surface of phagocytic cells and are classified 
based on the ligands they recognize. These include different 
PRRs (Mannose Receptor and Dectin-1), Scavenger receptors, 
TAM Receptors, CD47-Signal Regulated Protein Alpha (SIRPα) 
System and the Macrophage Receptor with Collagenase Structure 
(MARCO). Macrophages are derived from free monocytes and 
upon recognition of DAMPs, they differentiate into the MI or M2 
phenotype depending on the type of cytokines.106

A. Mannose receptor:

The Mannose receptor (MR) also known as CD206 and belongs 
to the family of C – Type Lectin family of Receptors. They are 
especially expressed on the surface of immature dendritic cells, 
endothelial cells, and macrophages. The main function of the MRs 
is the recognition and internalization of specific endogenous and 
exogenous ligands. The MR has been found in the serum samples 
of hospitalized patients suffering from various inflammatory 
diseases.107 It is also found that MRs are expressed in high levels 
post-stroke in microglia and are very significant since these 
receptors are known to clear cell debris and DAMPs helping in 
post stroke recovery.108

B. Dectin -1:

Dectin-1 expression increases on day 3 post Ischemic stroke. 
Dectin-1 and Syk antagonist treatment once led to a decrease 
in the levels of these molecules. Moreover, it is also found to 
be responsible for the activation of NLRP3 inflammasome.109 
Ye et al suggested that Dectin-1/Syksignalling overexpression 
enhances neuroinflammation by microglial polarization in stroke 
and may have a deleterious effect on brain tissue.110 In an MCAo 
model of mice, Jasminoidin (JA) and Ursodeoxycholic Acid 
(UA) synergistically conferred neuroprotection by inhibiting the 
Dectin-1 induced NF-kB activation.111

C. Scavenger Receptors:

These are a subcategory of PRRs found on phagocytic cells such 
as microglia, macrophages and dendritic cells. Previously, they 
were thought to internalize oxidized Low-Density Lipoproteins 
(LDL) but were later found to recognize a variety of exogenous 
and endogenous ligands including DAMPs.112 They are of different 
classes from A to J and are also found in the cytosol post proteolytic 
cleavage.113 They play an important role in atherosclerosis 
and might play critical role in stroke. CD36, a type B receptor 
(SCARB-B), is the most studied in Ischemic stroke. It is found 
to be involved in phagocytosis of monocytes and modulation of 
immune cell recruitment in Ischemic stroke.114-116

Liu et al. found that the inhibition of the TLR4 signalling pathway by 
the phthalide derivative CD21 reduced tPA-induced Haemorrhagic 
Transformation (HT) through Macrophage Scavenger Receptor 
1 (MSR1) mediated DAMP clearance.117 In an MSR1-deficient 
mouse induced with cerebral ischemia, MSR1 was overexpressed, 
thereby increasing white matter degeneration and behavioural 
defects through PI3/Akt pathway, indicating their importance 
in phagocytosis post-stroke.118 To investigate the role of another 
scavenger receptor CD36 in the infiltration of myeloid cells in the 
Choroid Plexus post stroke, MCAo was carried out in neonatal 
mice. It was found that CD36 mediates neutrophil and monocyte 
recruitment and changes in gene expression in the Choroid Plexus 
(CP) Ipsilateral to the MCAO.119 Also. Scavenger Receptor A 
(SRA) was found to pivot macrophages to M1 phenotype in an 
MCAo animal model120 and its importance in ischemic stroke has 
been investigated by Xu et al., where MCAo was performed after 
knockout of SRA mice. They found that SRA plays a critical role 
in pivoting macrophages to M2 phenotype too.116

D. Macrophage Receptor with Collagenous Structure 
(MARCO) Receptor:

Macrophage Receptor with Collagenous Structure (MARCO) are 
found to internalize DAMPs post tissue injury in stroke. They 
are found in increased levels in the mouse cortex after MCAo, 
indicating their role in clearing debris and in differentiating 
monocytes to dendritic cells.121

E. Triggering Receptor expressed on Myeloid Cells 2 (TREM 
2):

Triggering Receptor Expressed on Myeloid Cells – 2 (TREM-2) 
is found on microglial cells and they phagocytose damaged brain 
cells. TREM2 mediates its action by reducing the transcription 
of pro-inflammatory cytokines, chemokines and their receptors, 
thereby activating microglia and promoting clearance of debris.122 

TREM-2 knockout mice showed reduced phagocytosis of injured 
neurons and worsened neurological recovery. It is also suggested 
that nucleic acids maybe a ligand for TREM-2 post ischemia in 
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in vitro cultures of neurons by TREM2-Fc.123 Similarly, Kurisu 
et al. found that in microglial TREM2 knockout mice, myeloid 
cell activation and phagocyte number were reduced, suggesting 
their importance in post-stroke recovery and that TREM2 on 
microglia played a more important role in recovery than those 
present on macrophages.124

F. Mer Tyrosine Kinase Receptors (MerTK):
Mer Tyrosine Kinase Receptor (MerTK) is found on astrocytes 
and microglia in the brain. It is known to phagocytose neurons, 
and its inhibition was found to prevent neuronal recovery and 
promote neuronal death.125 Further, in a MerTK MCAo model 
of knockout mice, MerTK inhibited synapse engulfment and 
improved neurological recovery post stroke in astrocytes or 
microglia by increasing synaptic density.126

G. Tyro3, Axl and MerTK Receptors:

Tyro3, Axl, and MerTK constitute the TAM family of receptor 
tyrosine kinase that are activated by their ligands Growth Arrest 
Specific 6 (GAS6) and Protein S 1 (PROS1), found on phagocytes. 
Protein S (PS) is an anticoagulant whose mutations are linked 
with thrombosis127 and is known to activate the TAM receptor 
in neurons. Zhu et al. found that PS inhibits BBB breakdown 
in hypoxic/ischemic brain in the BBB model of human brain 
endothelial cells and is mediated by Tyro-3 after which PS 
activates SIP1.128

H. CD47- Signal Regulated Protein Alpha (SIRPα) System:

SIRPα is a transmembrane protein that is found on neurons, 
macrophages and dendritic cells. In a SIRPα knockout mice 
followed by MCAo, it was found that there was reduced infarct 
size, neuronal injury, oxidative stress and improved neurological 
outcome which maybe mediated through upregulation of 
phospho-Akt, Nuclear factor erythroid-derived 2-like 2 (Nrf2) 
and heme oxygenase -1, indicating the first study to investigate 
the importance of SIRPα in ischemic stroke.129

I. Protein S(PS) Receptor:

The PS receptor constitutes 5-10% of the lipid bilayer. Its function 
involves activation of signalling pathways, neurotransmission, 
synapse formation and apoptosis, improving cognitive function 
and inhibiting neuroinflammation.130 These receptors are decreased 
below the control level in the ischemic brain due to enormous cell 
death and degradation of the membrane component.131 Its role as 
a therapeutic target in ischemia has been extensively discussed.132 

CD300a, a type of PS Receptor found on brain myeloid cells was 
found to inhibit the DNAX activating protein of 12 kDa (DAP12) 
signalling pathway, thereby enhancing phagocytosis of apoptotic 
myeloid cells 1 hour after MCAo. Hence, there was decreased 
production of DAMPs in the penumbra region.133

2.1.1.3. Chemotactic Receptors:

Chemokines are small, secreted proteins that act through 
chemotactic receptors to stimulate the migration of immune cells 
to the site of tissue injury There are two types of chemokine 
receptors: Conventional (cCKRs) and Atypical (aCKRs). There are 
23 cCKRs and five major aCKR receptors: ACKR1/DARC (Duffy 
Antigen Receptor for Chemokines), ACKR2/D6, ACKR3/CXCR7, 
ACKR4/CCRL1 (CC-Chemokine Receptors like 1) and ACKR5/
CCRL2.134 The crucial role of potent phagocytic and chemotactic 
receptors in Ischemic stroke is given in Fig.2.Recently, CCR5 
expression is found to be increased in post stroke neurons, and its 

inhibition improved post stroke recovery and cognitive memory. 
It is also suggested that CCR5 deficiency contributes to BBB 
damage and increased inflammation post stroke via Tred dependent 
pathway.135 Chen et al. administered Maraviroc, an FDA approved 
anti-viral drug for HIV in the MCAo model of mice and found that 
it conferred Neuroprotection through CCR5 by reducing infarct 
sizes, decreasing cytokine production, inhibiting the MAPK and 
NF-κβ pathway.136 Maraviroc also improved motor recovery in 
stroke.137 Another study suggests that loss of function of CCR5, 
is compensated by CCR2 and CCR3.138

CXCL12 via its receptor CXCR4 is involved in the recruitment 
of immature immune cells to the Ischemia penumbra and induces 
recovery.139 Similarly, to identify the role of CXCR7 in ischemic 
stroke, Endotherin-1 was induced in the ipsilateral motor cortex 
and striatum to induce ischemia in mice. Further, in six Ischemic 
stroke patients, Cerebral cortical infarcts were isolated and 
investigated for the expression of Stromal-derived factor – 1 (SDF-
1/CXCL12) and its receptors CXCR4 and CXCR7. There was an 
increased expression of CXCR7 in humans and not CXCR4 in the 
penumbra, suggesting that CXCR7 maybe the primary receptor 
for SDF-1 in humans but not in mice.140 Tarazzo et al. analysed 
the role of Fractalkine and its receptor CX3CR1 in transient 
MCAo model of mice and found that the receptor concentration 
increased at 24 hours and 48 hours, and overexpressed at 7 days 
in activated microglial cells post ischemia, indicating that their 
signalling pathway is important for the infiltration of microglia 
into the infarcted tissue.141 In contrast, Denes et al. also analysed 
the expression of CX3CR1 in knock out mice and found that 
infarct sizes were reduced to about 56% after MCAo compared 
to the wild type.142

CCL2 and its receptor CCR2 are involved in the monocyte 
recruitment and leukocyte infiltration.143 To prove Oliver B et 
al. induced Focal cerebral ischemia in CCR2 knockout mice 
and found that BBB permeability and edema formation were 
reduced compared to wild-type mice. Monocyte and neutrophil 
infiltration were also reduced by 7 and 4-fold respectively, thereby 
indicating the importance of CCR2.144 Similarly, in MCP-1 and 
CCR2 deficient - GFP labelled transgenic mice, there was a 
complete inhibition of neutrophils and macrophages infiltration, 
4 days and 7 days post ischemia.145 CCR2 and CX3CR1 role in 
neuroprotection was also confirmed by Giulia et al., in a ferric 
chloride induced middle cerebral artery thrombus model.146

Fig.2: Role of Phagocytic and Chemotactic Receptors in Ischemic Stroke. 
The important chemokines playing an active role in Ischemic stroke such as 
MIP-1α, IP-10, CXCL12, SDF-1, Fractalkine and CCL2 bind to their respective 
receptors CCR5, CCR3, CXCR4, CXCR7, CX3CR1, CCR2. CCR5 and CCR3 and 
activate the Tred and MAPK/Nfkb pathway to initiate BBB breakdown. CXCR4 
and CXCR7 are involved in the stroke recovery process. CX3CR1 activation 
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induces infiltration of microglia to the infarct. CCR2 recruits monocytes and 
neutrophils. Phagocytic receptors internalize the DAMPs and induce proteolytic 
cleavage. Dectin-1 initiate Sky signalling and activate NLRP3 inflammasomes, 
exacerbating brain damage. CD36, MARCO and TREM-2 phagocytose Oxidized 
lipoproteins, apoptotic cells and damaged neurons respectively. SRA activation 
polarizes macrophages to the M1/M2 phenotype. MerTK and TAM receptors 
activate SIP1 and initiate BBB breakdown. SIRPα induces neuroprotection by 
activating antioxidant enzymes.

2.1.2. Receptors of the Adaptive Immune response:

The adaptive immune response involves activating two cell types: 
B cells and T cells. There are two types of T cells: CD4+ and 
CD8+ T cells. CD4+ cells differentiate into Th1, Th2 to produce 
proinflammatory effects and Th17, or Tregs to produce anti-
inflammatory effects. CD8+ cells release perforin and granzyme 
that helps in killing of cancer cells and other virus Infected cells 
through cytotoxicity. These cells are activated by binding of 
extracellular ligands to specific membrane receptors called B cell 
(BCR) and T cell Receptors (TCR). The adaptive immune response 
is activated within 24 hours post injury during ischemic stroke.147

A. T cell Receptors (TCRs):

The activation of T cells is induced by the binding of specific 
ligands such as Class II MHC molecules to its receptor (TCR). 
Multiple signalling pathways are activated once T cells are 
engaged.148,149 T cells also possess co-stimulatory or co-inhibitory 
molecules which either amplify or inhibit the immune response 
respectively.150,151 Different studies have evaluated the TCR gene 
repertoire in Haemorrhagic stroke.152 In Ischemic stroke, the TCR 
of Treg cells were more diversely expressed in the brain than in 
Splenic cells.153 T cell activation after Ischemic stroke can be 
antigen-independent since HMGB1 and other TLR ligands can also 
induce a T cell response 24 hours post stroke.154 However, they can 
be antigen dependent as well where neuronal and myelin antigens 
are found to induce CD69+ T cell activation in AIS patients.155

Since T-cell Receptors are potent in the activation and mechanism 
of action of T cells, Zong et al. conducted TCR sequencing in the 
peripheral blood of 25 AIS patients and 10 controls. They found 
that both immunosuppression and enhanced T cell responses were 
active in the AIS patients.156 Similarly, in another study, the TCRβ 
and CDR3 region of the TCR gene was sequenced in patients 
with subarachnoid haemorrhage in addition to Delayed Cerebral 
Ischemia (DCI) (severe and non-severe), which suggests that the 
increased expression of these genes may serve as a biomarker 
in severe DCI patients.157 Considering the function of TCRs 
in ischemic stroke, immunomodulatory drugs that block the 
stimulatory effects of TCR while improving the anti-inflammatory 
effects need to be further explored. But immunosuppression also 
leads to poor prognosis in stroke. Many FDA approved drugs have 
potential to balance the pro-inflammatory and anti-inflammatory 
responses but showed adverse reactions in other diseases.150 
Therefore, therapeutic interventions aiming at TCR and its 
signalling pathway should be developed with careful consideration 
of the dosage, time, and location with decreased side effects in 
ischemic Stroke.

B. B cell Receptors (BCR)s:

Although the role of B cells has been widely discussed by Wu et 
al.,158 the crucial role of B Cell Receptors in ischemic stroke is 
yet to be investigated.

2.1.3. Receptors common to both innate and adaptive immune 
systems:

A. Complement Receptors:

The complement system is a crucial part of the innate immune 
system that has been previously thought to be involved only 
in host defence and tissue homeostasis.159 There are more than 
50 different types of membrane proteins associated with the 
complement system and therefore it is found to play a critical role 
in other physiological functions such as synapse pruning, tissue 
regeneration, clearance of immune complexes and angiogenesis.160 
Several complement system components were found in the post-
stroke ischemic brain 161,162 and inhibition of the complement 
components were observed to reduce the ischemic damage.163

Among the different complement components, C3a mediates an 
immune response by binding to its receptor C3aR. A detailed 
review on the role of C3aR in ischemic stroke has already been 
discussed.164 C3a, a 21-amino acid neuropeptide derived from 
the VGF precursor protein (TLQP-21) are specific ligands for 
C3aR. The C3a Receptor is expressed on many central nervous 
system cells and involves different functions such as neuronal 
differentiation, cytokine expression and synaptic modulation. 
Hence, their role during the ischemic stroke recovery phase depends 
on the type of cells they are expressed on and the duration of the 
response.165 C3aR signalling has been shown to improve recovery 
by inducing neural plasticity and synaptogenesis; therefore, several 
C3aR antagonists have been developed to enhance long-term 
stroke recovery. In a mouse MCAo model of Ischemic stroke, 
C5aR antagonists improved neurological outcome 24 hours after 
Ischemic injury by causing a significant reduction in the size of 
the infarct volume suggesting that modulating the C5aR activity 
differentially regulates neuronal damage.166

B. Fc receptors:

Immunoglobulins have a Fragment Antigen Binding (Fab) region 
that binds to an antigen and A Fragment Crystallizable (Fc) region 
that binds to different FcRs. These receptors bind isotypes of 
immunoglobulins including IgG, IgM, IgE, IgD and IgA. Specific 
FcR exists for each antibody sub-class, with FcαR binding to 
IgA, FcγR binding to IgG, FcδR binding to IgD, FcεR binding to 
IgE, and FcμR binding to IgM.167 Most studies involving the Fc 
receptors focus on the FcγR’s role in Ischemic stroke. Komine-
Kobiyashi et al used FcγR knockout mice and induced MCAO, 
where the receptor deficient mice showed reduced infarct sizes 72 
hours post stroke. They also proved the importance of the FcγR 
in progression of neuronal damage and proliferation of microglial 
cells.168 Therapeutically, Intravenous Immunoglobulin (IVIG) is 
an immunomodulator approved for treatment of various other 
neurological diseases and prevents neuronal death in stroke.169

C. Cytokine Receptors:

Inflammatory cytokines are glycoproteins released by brain cells 
such as microglia, glial cells, endothelial cells and neurons. An 
increase in the production of pro-inflammatory cytokines and a 
decrease in anti-inflammatory cytokines is correlated with worse 
clinical outcomes and large infarct sizes.170,171 Understanding the 
timing of release of these cytokines determines their utility as 
therapeutic agents.172 Fig.3 depicts the function of TCRs, receptors 
of the Complement, Fc system and various cytokine receptors 
in Ischemic stroke.TNF-α binds to leukocytes via TNFR1 and 
TNFR2.Hansan et al. evaluated the plasma levels of these receptors 
in 33 patients with AIS and 10 healthy controls and found that their 
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levels were increased with stroke severity but had no correlation 
with outcomes. A decreased population of non-classical monocytes 
and neutrophils expressing TNFR1 and an increased population 
of neutrophils expressing TNFR2, was seen, implicating the 
importance of the peripheral immune response in mediating the 
acute phase of stroke.173 Similarly, in another study, blood samples 
were drawn from 34 patients at the time of admission (<8hrs) 
and at 72 hours post-stroke. They found that the plasma levels 
of TNFR1 and TNFR2 were increased at 8 hours, whereas there 
was no significant change in TNFR1 and TNFR2 at 72 hours, 
suggesting that add-on therapy targeting these receptors can be 
developed as a therapeutic target.174

In one study, Bone Marrow cells expressing high levels of ILR1 
antagonists were induced in MCAO mice, where it was found 
that ILR1a increased the expression of TNF, IL-10 and IL-4 
while decreasing the expression of IL-12p70, IL-1β and TLR2. 
Hence, correlating with improved stroke outcomes, the study 
described the mechanism by which Bone Marrow cells promote 
neuroprotection.175 Similarly, in another study Involving 844 
stroke1 patients and 668 Controls, genetic variation analysis 
was done in IL1Ra and found that three SNPs (rs380092) were 
associated with IL1Ra supporting their role in Ischemic Stroke.176 

IL-6 binds to IL-6R and recruits Glycoprotein (gp130) further 
activating the PI3K/Akt, MAPK and the Janus Kinase (Jak)/Signal 
Transducer and Activator of Transcription (STAT) molecules, 
increasing the risk of Ischemic stroke. Blocking IL-6 signalling 
has been found to reduce the risk of stroke.177,178 Like, IL-1R, three 
SNPs were found to be associated with genetic polymorphisms 
in IL-6R.179 Finally, the binding of IL-10 to its receptor (IL-10R) 
initiates the anti-inflammatory response in stroke. The mRNA 
levels of IL-10R are increased on astrocytes in the ischemic 
penumbra and one study found that IL-10 signalling downregulates 
IL-17A production on Th17 cells in the Ischemic brain.180

Fig.3. Role of TCRs, Complements and Cytokine receptors in Ischemic 
stroke: On binding of DAMPs such as HMGB1, neuronal and myelin antigens 
to diverse TCRs, T cells activate an inflammatory response that may induce 
neuroinflammation in the early phase and neuroprotection in the late phase by 

activating the Lck, Fyn, ZAP-10 and ITAMs, thereby improving BBB function. 
The complement receptor C3aR is involved in neuronal and synaptogenic recovery 
whereas the FcγR Immunoglobulin receptor induces neuronal damage. TNFR1 
activates monocyte and neutrophil infiltration. IL-1R increases TNF, IL-10 and 
IL-4 while decreasing IL-12p70, IL-1β and TLR2. IL-6R along with its co-
receptor gp130 activates the JAK/STAT and PI3K/Akt pathway to induce brain 
damage. Activation of IL-10R decreases the production of Th17 cells while 
increasing IL-17A levels, which subsequently reduces neuronal damage and 
induces neuroprotection.

2.2 Temporal dynamics of immune receptors during the 
different phases of stroke:

While the production of various inflammatory mediators and 
role of immune cells in different phases of ischemic stroke are 
well established. Recently, it has been discovered that temporal 
dynamics of receptors activation and deactivation plays critical 
role in stroke patients. TLR2 expression declined at Day 14 in a 
photothrombotic mouse model called TLR2sm-fluc-GFP mice.181 
Inflammasome expression increased at 3-5 days post stroke and 
declined at day 7.182 Atsuchi et al. studied the transcriptome 
profile of the DAMP-related genes in an experimental stroke 
model at different time points ranging from day 1 to day 28 
and found that expression of DAMPs increases at the acute and 
sub-acute phase of stroke. Some of the up-regulated genes of 
immune receptors in these two phases are TLR 2, 4, 6, 7, 8 and 
13, Clec7a, MSR1, CD57, Trem2. Ccr, Cxcr, Clec4d and Clec4e 
peaked at Day 1-14 while C3ar1, Clec7a, Trem2, Msr1, NLRP3, 
CD36 peaked after day 3-14. The phagocytotic transcriptome 
profile indicates an increase in phagocytosis at the sub-acute 
phase from 3 days to 2 months post-stroke.183 TLR expression 
was continuously up-regulated through all stages of stroke with a 
peak concentration from 3 days to 1-month post-stroke.184 CCR5 
and CXCR4 expression was increased at days 3 to 11 days post 
stroke in CD11 positive cells, astrocytes and neurons.185 TNF 
Receptors are up regulated from 4 to 6 hours till up to 5 days post-
stroke.184 The first randomized, double-blind, placebo-controlled 
trial using I.V. injected recombinant human (rh)IL-1Ra in acute 
stroke patients (given within the first 6 h of stroke onset) showed 
a reduction in neutrophil count, plasma CRP, and IL-6 compared 
to the placebo with minimal to no disability three months after 
stroke. IL-R receptor expression is known to increase 3 days 
post-stroke.186 Inhibition of C3aR receptor in the acute phase 
and facilitation in the later phase induces functional recovery in 
stroke.187 Hence, more studies related to the temporal expression 
of the most relevant immune receptors involved in stroke are 
necessary to evaluate a therapeutic window for these receptors 
for translational stroke research.

Therapeutic interventions targeting the immune receptors:

So far, tissue Plasminogen Activator (tPA) administration and 
endovascular thrombectomy are the only approved treatments 
for ischemic stroke.188 The limitation for this therapy is the time 
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Table 1: Summary of clinical studies and research papers denote the various antagonists developed targeting their respective 
receptors for Ischemic stroke.

S. 
No.

Model Compound Receptor Therapeutic Outcomes Reference

1 Human ApTOLL TLR4 Low NIHSS (NIH Stroke Scale) score at 72 hours 
(-10%), smaller final infarct volume (1%) and low-
ered disability at 90 days post-stroke. (1.76 – 5.00)

[192]
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2 Mice MCAO Pam2/3CSK4, 1a, 1b TLR1/2 and 
TLR2/6

Reduced brain infarct size (1.9 ± 0.5% vs 9.4 ± 2.2%) 
Reduced acute mortality (4.3% vs 24.2%),  Preserved 
neurological function (8.22 ± 0.64 vs 3.91 ± 0.57), 
Attenuated brain edema (84.61 ± 0.08% vs 85.29 ± 
0.09%). Preserved BBB function as evidenced by 
decreased leakage of serum albumin (0.528 ± 0.026 
vs 0.771 ± 0.059) and Evans Blue (9.23 ± 0.72 μg/mg 
vs 12.56 ± 0.65 μg/mg) into brain tissue.

[193]

3 MCAO in 
C57BL/6

TAK-242 TLR4 Reduced brain infarct size (12.5%) compared to un-
treated mice (21.3%; #Po0.05). Improved neurologic 
function (6.73) compared with untreated mice (4.38; 
#Po0.05).

[194]

4 MCAO in 
Rats

ApTLR#4F and ApTL-
R#4FT

TLR4 49% reduction in infarct size. Improved neurological 
outcome at 2-and 7-days post-stroke.

[195]

5 Precondition-
ing followed 
by MCAO in 
Rats

DPCPX (8-cyclopen-
tyl-1,3-dipropylxan-
thine)

Adenosine 
A1 Receptor

Ischemic Preconditioning.
Reduction in the cortical and subcortical infarct 
volume following 120 minute MCAO.

[196]

6 MCAO Rats Pyridoxalphos-
phate-6-azophe-
nyl-2`,4`-disulphonic 
acid (PPADS)

P2 Receptor Infarct volume reduced upto day 7 whereas func-
tional recovery was sustained till Day 28.

[60]

7 tMCAO Mice Inhibitory oligodeox-
ynucleotide (iCpG-
ODN)

TLR9 Decreased infarct size in a dose-dependent man-
ner. Suppression of NFkb, IRF7, IL-1β, TNF-α, and 
IFN-β and 

[197,198]

8 Rat MCAO 
Model

Luteolin TLR5 and 
TLR4

Reduction in infarct volume at 24-72 hrs. Reduced 
Brain edema: around 86% in 72 hours

[199]

9 Mice Photo-
thrombosis 
and OGD

A14 CCR5 Infarct volume reduced 7 days post-stroke, signifi-
cant reduction in BBB permeability

[200]

10 Adult SD Rats 
and C57BL/6 
mice.

CX549 CXCR4 Inhibition of CXCL12 – mediated chemotaxis, sig-
nificantly improved behavioural function, reduced 
brain infarction, and suppresses the expression of 
inflammatory markers.

[201]

11 Adult CD1 
Mice

AMD3100 CXCR4 Brain edema–induced change of water content, IgG 
protein leakage, Evans blue extravasation, occludin, 
and ZO-1 expression in ipsilateral hemisphere were 
alleviated by acute treatment of AMD3100 3 days 
post MCAO.

[202,203]

12 Mice MCAO Maraviroc CXCR4 Anti-inflammatory and anti-apoptotic. [204–206]

13 tMCAO mice SB290157 C3aR Reduced infarct volume at 48 hours and improved 
neurological and functional recovery. Suppression of 
T cell infiltration.

[207]

14 MCAO Mice JR14a C3aR Reduced, infarct volume, BBB permeability and neu-
ral impairment. Suppression of TNF-α and IL-6.

[208]

15 OGD on cor-
tical neurons

DF3016A C5aR Restorage of intracellular calcium levels. [209]

16 C57BL6 mice Intravenous Immuno-
globulin (IVIG)

FcR Polarization of Microglia towards the M2 Phenotype. [210]
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window which includes <4 hours for tPA and <24 hours for thrombectomy. More studies are focused on stem cell therapy and 
microRNA-based post stroke treatment.189,190 Unfortunately, most of these therapies failed during clinical trials due to inability of 
target specific delivery, avoidance of degradation and pluripotency of stem cells. Hence the development of therapeutics with minimal 
side effects and targeted time- and dose-dependent delivery is pivotal in modern stroke therapeutics.191 Tables 1 and 2 summarize the 
antagonists and inhibitors developed against the various immune receptors, the model organism used, and its effects in Ischemic stroke.

Table 2: Summary of the different inhibitors developed targeting their respective receptors or their associated signalling 
molecules/mediators in Ischemic stroke.

S. No. Model Inhibitor Receptor Effects References
1 Adult SD Rats Baicalin TLR2 and TLR4 Reduced infarct size and volume and Sup-

pression of TLR2/4 signalling.
[211]

2 Mice MCAO Salvianolic acid B CD36 Sal B significantly improved neurological 
deficits, reduced infarct size, attenuated 
cerebral edema and GFAP, Iba1, IL-1β, IL-6, 
TNF-α and Cleaved-caspase 3 production 
was reduced.

[212–214]

3 Mice MCAO Curcumin NLRP3 Curcumin ameliorated white matter (WM) 
lesions and brain tissue loss 21 days post-
stroke and improved sensorimotor function 
3, 10, and 21 days after stroke. Decreased 
pyroptosis-related proteins.

[215,216]

4 Rat MCAO Phthalide derivative 
CD21

MSR1 PRX1 clearance and TLR4 inhibition. [117]

5 Adult CD1 mice apoE-mimetic 
peptide COG1410 
(TREM-2 agonist)

TREM-2 Improvement in both short-term and long-
term neurological functions, reduced brain 
edema, inhibited microglia/macrophage 
activation and neutrophil infiltration.

[217,218]

6 C57BL/6 Mice UNC2025 MerTK Decreased platelet activation and protected 
animals from pulmonary embolism and 
arterial thrombosis without increased bleed-
ing times. Anti-thrombolytic activity.

[219]

7 MCAO Mice Proprotein conver-
tase subtilisin/kexin 
type 9 inhibitor 
(PCSK9i)

CD44 Significantly improved neurological deficits 
and reduced the volume of cerebral infarc-
tion. Activation of GPNMB/CD44 pathway.

[220]

8 22 Human pa-
tients with acute 
stroke

Fingolimod Sphingosine – 
1 – phosphate 
receptor

Patients with acute and anterior cerebral 
circulation occlusion stroke, oral fingolimod 
within 72 h of disease onset was safe, limited 
secondary tissue injury from baseline to 7 
d, decreased microvascular permeability, at-
tenuated neurological deficits and promoted 
recovery.

[221]
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Conclusion

Although the function of each receptor is known, their effect on the 
neuroinflammation mechanism of ischemic stroke depends on the 
time, duration, and extent of neurological damage, co-morbidities, 
age, gender, environmental influence and other unknown factors. 
For example, the levels of IL-6R vary in the acute phase, chronic 
phase and recovery phase of stroke. Moreover, females are more 
prone to Stroke and poor outcomes occur during their old age as 
compared to males. Patients with high blood pressure and diabetes 
possess an increased risk of stroke than those with no such co-
morbidities. Epigenetic modulators have been known to change 
gene expressions in ischemic stroke, thereby influencing stroke 
outcomes. The immune mechanism of stroke depends on these 
factors and therefore, more studies are required to uncover the 
function of these receptors concerning the aforementioned factors  
to understand the overall mechanism of Ischemic stroke. There 
are other unexplored receptors of the immune system that warrant 

extensive research to uncover their function in Ischemic stroke. 
Furthermore, there are other receptors on other cells apart from 
the immune system that crosstalk with these immune receptors, 
which may influence the treatment and outcome that is beyond 
the scope of our review. Even after decades of research, stroke 
is still classified as the third leading cause of death globally. 
A comprehensive study of immune receptors at different time 
points with the inclusion of epigenetic mechanisms and other co-
morbidities in a sex-specific manner may be the key to identifying 
potential therapeutic targets.
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