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Abstract

An ischemic stroke occurs when the blood supply to cerebral region is obstructed, resulting in severe neuroinflammation and neuronal
damage. Ischemic stroke is one of the leading causes of death and permanent disability worldwide. The receptors expressed on the surface
of immune cells play a critical role in pathogenesis and recovery during and after cerebral ischemia. Important receptors of the innate
and adaptive immune system like Pattern Recognition receptors, T cell Receptors and others for various ligands released by damaged
brain cells initiate neuroinflammation, orchestrate inflammatory cascades and channelize diverse molecular pathways, thereby influencing
neuroprotection and post stroke recovery. This review highlights important roles of these immune receptors in cerebral ischemia, focusing
on their involvement in recognizing molecular patterns associated with cellular damage, modulating neuroinflammation and influencing the
equilibrium between inflammatory tissue damage and recovery. Additionally, the review also focusses on various strategies by which these
receptors can be targeted for the development of novel stroke therapeutics. Since there is a scarcity of treatments available in the market
for stroke patients, understanding the multifaceted role of these receptors may help in developing novel and potential stroke therapeutics.
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Introduction

Stroke is a critical biomedical condition resulting in interruption
of blood supply, preventing it from receiving necessary oxygen
and nutrients. It is one of the leading causes of death, disability
and cognitive impairment worldwide'? and it remains the second
leading cause of death.® The mortality rate of stroke increased
from 38.8 per 100,000 in 2020 to 41.1 per 100,000 in 2021* and
in India, 1.8 million people are affected by stroke every year.’ The
financial burden of stroke treatment and post-stroke care is massive
and is expected to rise to 184.1 billion USD in the year 2030,
according to the American Stroke Association.® Unfortunately, due
to restricted medical access, high cost and very limited capacity
of regeneration within the Central Nervous System (CNS), there
is no such effective treatment for stroke other than reperfusion
therapy till date. Early detection and treatment are crucial as the
number of stroke cases is rising at an alarming rate.’

1.1. Neuroinflammation in Ischemic Stroke:

Ischemic stroke is caused by a deficiency of oxygen, lipids
and glucose in the brain due to an arterial embolism, resulting
in the production of oxidative stress, excitotoxicity and
neuroinflammation.®!* Damage to neuronal cells due to this
deficiency causes excessive release of glutamate that activates
N-methyl D-aspartic Acid (NMDA) receptors and leads to a Ca2+
influx into the cells, causing cell death." These damaged neurons
and astrocytes then release Reactive Oxygen Species (ROS) that
deplete glutathione, thereby inducing a more rapid tissue injury
and death. Neuroinflammation results in the activation of the
immune system in response to ischemic insult and involves various
immune cells, immune receptors, and molecular mediators causing
increased infarct size leading to worse neurological outcomes.'?
The Stroke Roundtable Consortium proposed to designate the
first 24 hours as the hyperacute phase, the first 7 days as the acute
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phase, the first 3 months as the early sub-acute phase, the months
4-6 as the late sub-acute phase, and from 6 months onwards as
the chronic phase."

1.2. Role of the Immune System in stroke:

The innate immune system acts as the first line of defence in
response to tissue injury. Upon disruption of blood flow to the
brain, tissue of the affected area becomes hypoxic and dies,
resulting in the release of certain molecules called Damage
Associated Molecular Patterns (DAMPs). It also activates resident
microglial cells that are responsible for immune surveillance in
the brain'* that polarize into the pro-inflammatory phenotypes
and bind the DAMPS via PRRs. One such PRR are Toll-like
Receptors (TLRs) that release many pro-inflammatory cytokines.
This activation further recruits other innate immune cells such
as neutrophils, monocytes, dendritic cells, lymphocytes and
macrophages. Activation of the innate immune cascade also
activates the adaptive immune system. This adaptive immune
response retains immunological memory and plays a potent
role in the recovery phase of stroke.'>'® Since many therapeutic
interventions primarily emphasises on these receptors as potential
targets, a comprehensive study of the immune receptors involved
in the pathogenesis and recovery of ischemic stroke is crucial.

Immune Receptors

A cell surface receptor binds to ligands such as hormones and
neurotransmitters, induce a conformational change, relaying the
signal to the target cell, that elucidates an appropriate response.
Among many receptors found on the surface of numerous cell
types in the human body, the immune receptors expressed on the
immune cells are most characterized till date due to their potential
role in immunity-related diseases and therefore, are highly targeted
for use in Stroke therapeutics."’

2.1. Types of Immune Receptors:

Receptors of the innate immune system generally orchestrate an
inflammatory response whereas those of the adaptive immune
system are involved in anti-inflammation, antigen presentation
and memory. Innate immune cells such as microglia, astrocytes,
monocytes, etc., possess various receptors that recognize neuronal
damage induced DAMPs such as Adenosine Triphosphate (ATP),
High Mobility Group Box Protein — 1 (HMGB1) and Heat Shock
proteins. Apart from these, there are other components of the
immune system such as complements and Fc receptors binding
to Immunoglobulins that play a significant role in the progression
of Ischemic stroke.'®"

The receptors of immune system are classified into following
types:

2.1.1. Receptors of the innate immune system:

Among the receptors of the innate immune system some of the
most important ones are Pattern Recognition Receptors (PRRs),
Phagocytic receptors and Chemotactic receptors.

2.1.1.1. Pattern Recognition Receptors:

Various Heat Shock Proteins (HSPs) (HSP60 and 70) and
fibronectin released by neurons post stroke acts as DAMPs and
activate the innate immune system via various PRRs thereby
inducing an intense proinflammatory response.'® PRRs are divided
into the following five types: TLRs, NLRs, RLRs, CLRs and
ALRs. They are not only found in the plasma membrane but also

in the intracellular component’s membrane and the cytoplasm.'
Fig.1 shows the role of crucial PRRs in Ischemic stroke and their
ligands.

Some of the important PRRs and their role are as follows:
A. Toll Like Receptors (TLRs):

TLRs are a group of evolutionarily conserved transmembrane
receptor proteins. Previously, TLRs were known to recognize
microbial pathogens via Pathogen Associated Molecular Patterns
(PAMPs). Different types of TLRs include TLR1, TLR2, TLR4,
TLRS and TLR6. That are expressed on the plasma membrane and
TLR3, TLR7, TLR8 and TLR9 that are expressed on endosomes.*’
They are also found in brain cells including microglia, neural stem
cells, neurons, oligodendrocytes and astrocytes. Upon binding to
adaptor molecules, TLRs activate two different pathways, i.e., the
Myeloid differentiation primary response 88 (MyD88)-dependent
pathway and the TIR domain-containing adaptor inducing
interferon-f (TRIF)-dependent pathway.”'* Activation of TLRs
following an Ischemic insult also activates various downstream
signalling pathways which may be destructive or neuroprotective
depending on the timing, localization and intensity of receptor
activation.

TLR2 and TLR4 are the main receptors that are activated post
ischemic insult. In a study involving 110 stroke patients, the levels
of TLR2 and TLR4 were analysed at 24 hours, 72 hours and 7
days. Their increased expression was associated with increased
levels of IL-1B, IL-6, TNF-0. and VCAM-1.7* It was found that
TLR2 was the most significantly upregulated TLR among all
TLRs and is involved in exacerbating the brain damage post
ischemia. TLR2 suppression improved neuronal recovery and
reduced infarct size.”>?

Zhou et al showed that a neuroprotectant called Tetrahedral
Framework Nucleic Acids (tFNAs) protected neurons from
apoptosis after oxygen and glucose deprivation (OGD) in in vitro
and reduced the infarct volume from 33.9% to 2.7% in Middle
Carotid Artery Occlusion (MCAO) rat models through the TLR2/
Myd88/NFkb pathway.?” Similarly, binding of High Mobility
Group Box 1 (HMGBI1) to TLR4 causes the infiltration of immune
cells via increased Blood Brain Barrier (BBB) permeability. After
the injection of neutralizing anti-HMGB1 antibodies, microglia
activation and BBB permeability were reduced.?® Polyphenols
have also been found to suppress inflammatory response and
promote neuronal recovery through the TLR4 pathway.”’

Recently, TLR preconditioning has been associated with reduced
ischemia injury. In an MCAO model, reduction in ischemic injury
was found to have occurred partially through TLR4.* In similar
studies, a low dose of various TLR ligands had reduced infarct
size prior to stroke.*** Interestingly, Interferon Regulatory Factors
(IRF3 and IRF7) were found to be mediated through TLR4 and
TLR9 preconditioning.*®* Moreover, Lipopolysaccharide (LPS)
preconditioning also induced high levels of interferon (IFN-B)
in the brain through TLR4.*

A group of researchers preconditioned mesenchymal stem cells
with lithium and isolated the extracellular vesicles (Li-EVs). Upon
injecting these into MCAO mice, a downregulation of TLR4 was
observed with increased Micro RNA (miR-1906) (a modulator of
TLR4) and decreased Nitric Oxide (NO) synthase and Nuclear
Factor kappa (Nf-kb) activity, reducing cerebral inflammation.*®
Therefore, pre-conditioning shifts the brain’s response from an
inflammatory to a neuro protective state, paving the way to target
neuro protective proteins as therapeutics.
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Various DAMPs of TLRs:

Some of the most important ligands that are associated with TLRs
are as follows.

* ATP:

Following ischemia, Adenosine Triphosphate (ATP) is released
uncontrollably in the interstitial space through cell damage. Upon
their release, ATP molecules activate Purinergic Receptors (P2X
or P2Y). Of the seven members of the P2X family, P2X1, P2X4
and P2X7 are functional in Ischemia and are highly expressed
on microglial cells.** P2X1 is expressed on both platelets and
neutrophils, thereby promoting platelet aggregation and neutrophil
chemotaxis to the site of ischemic insult***! P2X4 shows sustained
activation on brain immune cells that contributes to ischemic
injury and are also expressed on T cells leading to T cell activation
and chemotaxis.”** Many P2X4 agonists have been developed
that has shown to reduce brain damage after stroke providing
a therapeutic approach and it has also been found to be highly
expressed in female mice proving there may be sex difference in
its expression.*

The P2Y family of receptors are activated by Adenosine
Diphosphate (ADP) and ATP. P2Y 12 and P2Y 13 are the most
abundantly expressed in microglial cells. Binding of ADP to
these receptors reduce cyclic Adenosine Monophosphate (cAMP)
via inhibition of adenylate cyclase thereby activating microglia.
They also activate P2Y 1 receptors expressed on astrocytes.*
P2Y2 and P2Y 11receptors that induce monocyte and neutrophil
migration. %47

Ectonucleotidases are membrane proteins that are catalytic in nature
and hydrolyse high levels of ATP in the inflammatory and ischemic
environment into AMP, that acts as an immunosuppressant.*®
Cluster Differentiation proteins (CD38, CD39, CD73) and
Ectonucleotide Pyrophosphatase/Phosphodiesterase-1 (ENPP1)
plays a significant role in the pathophysiology of stroke. CD38
expression is highest on astrocytes and endothelial cells.
Nicotinamide Adenine Dinucleotide (NAD) have strong anti-
inflammatory and neuroprotective properties in stroke and has
also been found to increase with aging; hence, there might be a
link between aging and stroke that is relevant to CD38 expression,
making it a potential target for stroke therapeutics.* CD39 is
highly expressed on microglial cells and endothelial cells.® It
was found to inhibit platelet recruitment and aggregation at the
site of ischemic insult.”' CD73 is highly expressed on B, T cells,
macrophages and neutrophils whereas ENPP1 is expressed on
microglia.® There are contradicting results regarding the role
of CD73 in Ischemic stroke since their expression is absent on
endothelial cells in mice and most of the studies are conducted
on different experimental models of mice. Within 20 minutes
of stroke onset, most of the adenosine produced from ATP is
mediated by CD73. Treg cells co-express both CD38 and CD73
and therefore, the adenosine produced by their co-ordinated
activity promote their own immunosuppressive state.™ CD73
also regulates Helper 17 (Th17) responses.™

During ischemia, adenosine is continuously secreted into the
extracellular space. When the mitochondria consume ATP, it
is converted to AMP. This AMP can’t be reconverted to ATP
due to lack of glucose and oxygen. Thus, ATP levels decrease
leading to an accumulation of adenosine that is formed from
AMP:* Four main receptors for adenosine differ in their affinity
and location: A, A,,, A, and A,. These are G-protein coupled
receptors and signals mainly through Phospholipase C (PLC),

calcium and Mitogen-Activated Protein Kinase (MAP) pathways.*
In normal physiological conditions, adenosine activates high-
affinity receptors A and A, while during ischemia, they activate
the low-affinity receptors A, and A,."" A| receptor expression is
evenly distributed across neurons in all areas of the brain whereas
A, , expression is the highest in endothelial cells, astrocytes and
lymphocytes. A, expression is highest in CNS and A, is found
in microglia and hippocampal neurons. Once, A R is activated, it
inhibits glutamate synaptic transmission, which is important for the
recovery of circuits in hippocampus upon reoxygenation while A,
signalling leads to an increase in glutamate excitotoxicity, thereby
both receptors exhibit counteracting effects.®® A also mediates
their effects on microglia converting their shape to amoeboid and
regulate their phagocytic properties. A, is found to have a dual
role where it influences mast cells to release pro-inflammatory
cytokines and influences dendritic cells and macrophages towards
an anti-inflammatory state. A, Receptor activation during Ischemia
is mainly found to have a damaging effect on cells and tissues.** P2
receptor inhibitors are being considered as therapeutic targets. In
a study where Pyridoxalphosphate-6-azophenyl-2’,4'-disulphonic
acid (PPADS) was injected 15 minutes prior to the surgery for up
to 7 days and functional improvements were assessed after 28th
day revealed a reduced infarct volume and recovery of motor
impairments.*

* Heat Shock proteins (HSPs):

Heat Shock Proteins are molecular chaperones, participating in
protein—protein interactions especially in the folding, assembly and
translocation of intracellular proteins. Under stressful conditions,
the intracellular concentration of HSPs increases. The role of
HSPs in haemorrhagic stroke has already been studied in detail !
HSP70 is the most studied HSP protein in neuroprotection and
is robustly produced during ischemia. Palanisami et al suggested
that HSPs may be used as anti-stroke therapeutic molecules.®
HSP70 promotes cell survival by suppressing the production
of inflammatory cytokines. In one study, intranasal injection of
recombinant HSP70 in mouse, significantly reduced the infract
volume in PFC.® A Single Nucleotide Polymorphism (SNP)
rs11682567 in HSP60 gene was associated with an increased
risk of ischemic stroke.®* HSP90 was also found to attenuate
ischemia by acting through the complements C3 and C5a and
Nf-kBsignalling.®

* High Mobility Group Box Proteinl (HMGB1):

HMGBI binds to TLR2 and 4 and acts through Myd88 dependent
pathway leading to the formation of monocyte-platelet complex,
thereby promoting thrombosis. Initially, non-acetylated forms
of HMGBI are released following infarction where it reaches
its peak concentration within 24 hours. A continuous release of
immune cells prompts the release of acetylated forms of HMGB1
that reaches peak concentration in about 6 days post stroke.® In a
study involving 132 patients, the HMGBI levels were measured,
and its increased expression was found to be directly related to
poor stroke prognosis.®’ Similarly, a total of 154 Acute Ischemic
Stroke (AIS) patients were followed up monthly for 43 months
to measure the levels of HMGBI1 until the subsequent stroke
recurrence which revealed that elevated levels of HMGBI1 was a
predictive indicator of AIS recurrence.®® It was also found to be
elevated in post-stroke depression patients.® In contrast, 1066
acute stroke patients were analysed for The Receptor for Advanced
Glycation End Products (RAGE) and HMGBI1 polymorphisms
and found no association between HMGBI levels and ischemic
stroke risk.”
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HMGBI1 mediates its mechanistic action by binding to TLR2,
TLR4 and RAGE influencing BBB disruption and haemorrhagic
transformation. It also promotes Metalloproteinase protein
(MMP9) activation, oligodendrocyte migration and neurovascular
remodelling by binding to these receptors. HMGB1 also mediates
its effects through the activation of NLRP3, cytochrome ¢ oxidase
subunit 2, NOS, IL-1B and promotes neuronal cell death.”" In
a study, GA-boronated ester-conjugated diethylaminomethyl-
dextran polymer-drug conjugate nanoparticles (an inhibitor of
HMGB1) were used in stroke-affected mice to evaluate their
efficacy in stroke recovery. Administration of the nano particles
showed significant reduction in infract volume, upregulation of
neurogenesis and polarisation of microglia to M2 phenotype.”

e Hyaluronan:

Hyaluronan binds to TLR4, and its activation is mediated
through HA receptors CD44 and the Receptor for Hyaluronan-
Mediated Motility (RHAMM). It is a crucial component of the
extracellular matrix and plays an essential role in angiogenesis,
promoting neuronal survival and micro vessel formation.” CD44
and RHAMM are expressed on various cell types in the brain.
CD44 is present in microglia after an ischemic stroke with its
expression upregulated post-stroke in the infarct area, thereby
enhancing inflammatory effects.”* RHAMM is expressed in a
subset of neurons and oligodendrocytes, mediating its function
intracellularly and acting as a receptor influencing cell migration
and growth.” Following ischemia, RHAMM is found to be
expressed on astrocytes in the periinfarct area.”

A study discovered that the expression of CD44 and Tumour
Necrosis Factor (TNF)-stimulated gene/protein 6 (TSG-6) is
elevated in infiltrating mononuclear cells. TSG-6 appears to play
a significant role in tissue remodelling following a stroke. In mice
post-MCAO, CD44 was shown to be present in stem cells and
microglia, contributing to the brain repair process by inhibiting
IL-1pB production and decreasing infarct size by over 50%."
Likewise, RHAMM was expressed in neuroblast stem cells in
the mouse subventricular zone (SVZ) and the rostral migratory
stream (RMS), suggesting Hyaluronan-mediated migration of stem
cells in these regions.” After ischemia, its expression increased
in the peri-infarct neurons and micro vessels of stroke patients.
This enhanced expression is associated with increased calmodulin
signalling, promoting angiogenesis and mitosis.” Hyaluronan
exists in High-Molecular-Weight (HMW) and Low-Molecular-
Weight (LMW) forms. HMW HA binds to CD44 and blocks
TLR4 activation on microglia that are induced by the binding
of LMW HA. Thus, HMW HA is found to be neuroprotective in
ischemic stroke.®

B. Nod like receptors (NLRs):

The inflammasome is a multi-protein complex involved in
sensing DAMPs and PAMPs, the activation of which leads to
the production of IL-1f and IL-18. There are four subtypes of the
NLR family based on their amino-terminal domain: NLR1, NLRB,
NLRP and NLRC. Except NLRP1, NLRP3, NLRP12, other NLR
protein complexes are involved in the recognition of pathogenic
ligands.®' The pro-inflammatory cytokine IL-1f has a profound
deleterious effect on brain damage during stroke. NLRP3 is also
seen to be increased in mouse cortical neural cells in in vitro and
in vivo models of ischemic stroke.?” Recently, NLRP2 has been
found to be expressed in the astrocytes of the CNS and is elevated
in Ischemic Stroke. In a study involving 60 AIS patients and 30
control groups, the serum levels of NLRP3 and its downstream
signalling mediators like IL-18, IL-1 and TNF-a were increased

at 24 hours. Also, the levels remained higher in the poor prognosis
group as compared to the healthy group.*

Bruton’s Tyrosine Kinase (BTK) is involved in the phosphorylation
of ASC and redistribution of macrophages influencing NLRP3
inflammasome activation and IL-1p production. Therefore,
inhibition of BTK can lead to an impaired activation of NLRP3.%
Moreover, BTK was found to perform as a platform protein for
ASC and NLRP3 where BTK is initially activated by DAMP
binding, and it interacts with ASC; Nigerecin (a NLP3 activator)
induces the recruitment of NLRP3 to this BTK-ASC complex.
Administration of Ibrutinibis is known to suppress the NLRP3
activation and signalling pathway. Thioredoxin-interacting protein
(TXNIP) is a crucial regulator of oxidative stress, cellular injury
and a glucose sensor.** To investigate its role in stroke and diabetes,
mice were induced with hyperglycaemia and embolic MCAo
(eMCAo) was performed after which molecular parameters were
investigated. The expression of TXNIP and NLRP3 were found
to be upregulated in Hyperglycaemic mice compared to normal
mice suggesting their role in BBB permeability and neuronal
damage. On treatment with tPA, the NLRP3 activation was slightly
reduced.®

Therapeutically, the anti-inflammatory activity of Ligustroflavone,
a compound derived from Ligustrum lucidum, was assessed in a
MCAO model of mice by measuring the levels of NLRP1 and its
inflammatory cytokines. It was found that the compound inhibited
NLRP1 activity.®” In another study, the miRNA miR-9a-5p was
found to attenuate Ischemic stroke through NLRP1 whereas
overexpression of miR-9a-5p decreased the NLRP1 expression
in MCAO rats and OGD cells.®®

C. C-Type Lectin Receptors (CLRs):

C-Type Lectin Receptors are dysregulated during excessive tissue
injury that leads to development of inflammatory diseases.* There
are many CLR subtypes out of which only MINCLE is found
to be involved in the pathogenesis of stroke, whereas DC NK
lectin group receptor-1 (DNGR1) promotes disease progression
in atherosclerosis.”” MINCLE is found to induce an inflammatory
response, reperfusion in experimental ischemic stroke and is found
in Ischemic brains.”’*? Its ligand Secreted Aspartyl Proteinases
(SAP10) and its downstream signalling molecule Spleen Tyrosine
Kinase (Syk) are all upregulated in Ischemia.

D. RIG like Receptors (RLRs):

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)
are key sensors of virus infection, mediating the transcriptional
induction of type I interferons and other genes that collectively
establish an antiviral host response.’® Recently, it has been found
that RLRs are elevated in the cortex of Alzheimer’s patients and
contribute to the inflammatory response post spinal cord injury.®’
Frank et al., alone analyzed Retinoic Acid Inducible Gene -1 (RIG-
1) and IFN-a in the hippocampus of MCAo rats and found that
both show an increase in astrocytes, indicating their significant
role in innate immune response. It has been shown that RLR and
IFN signalling possess anti-inflammatory effects.”

E. Absent in Melanoma like Receptors (ALRs):

AIM2 inflammasome, a multiprotein complex, plays a crucial
role in the inflammatory response and contributes to brain injury
by triggering cell pyroptosis and increasing blood-brain barrier
permeability by forming AIM-2 inflammasome.*® The role of ALR
in other diseases such as Alzheimer’s'” and cancer have been
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studied previously, but their role in ischemic stroke has only been
studied recently. AIM2 protein has been found in the blood clots of
patients who had acute stroke and underwent thrombectomy.'" The
AIM-2 inflammasome and its downstream signalling molecules are
increased in neuronal cell lines such as astrocytes, microglia, and
human Neuroblastoma.'” Therapeutically, three AIM-2 inhibitors
that were found to confer neuroprotection in Ischemic stroke are
cGMP-AMP synthase (cGAS) antagonist A151, miR-485 and
the selective inhibitor of histone deacetylase 3 (HDAC3).103-105

IRF3
e } { } {
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= B A
(B4
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TLR Pathway
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platelets

Caspase-3
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NLRP10 ALR
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Fig.1: Role of Innate immune receptors in Ischemic stroke. DAMPs upon
binding to TLR2 and TLR4, activate the Myd88 and TRIF-dependent pathways
respectively and produce increased levels of IL-6, TNF-0o, VCAM-1 and IRF-
3. TLR7, TLR3 and TLR9 secrete IRF3 and IRF7. CLEC-2 is involved in the
activation of platelets, thereby increasing BBB permeability. Mincle activates
Syk signalling pathway that is also contributing to BBB breakdown. Activation
of RLR and ALR induces the production of IFNa. NLRP10 suppresses the
activation of TLR pathway and NLRP3 secretes IL-1p and IL-18, increasing
BBB permeability. These inflammatory mediators collectively exacerbate brain
damage during Ischemic stroke.

2.1.1.2. Phagocytic Receptors:

Neutrophils, Monocytes and Dendritic cells are phagocytic cells
that engulf damaged cells in the phagosome and initiate lysis
via lysosomes. This process takes place through a variety of
receptors on the surface of phagocytic cells and are classified
based on the ligands they recognize. These include different
PRRs (Mannose Receptor and Dectin-1), Scavenger receptors,
TAM Receptors, CD47-Signal Regulated Protein Alpha (SIRPa)
System and the Macrophage Receptor with Collagenase Structure
(MARCO). Macrophages are derived from free monocytes and
upon recognition of DAMPs, they differentiate into the M1 or M2
phenotype depending on the type of cytokines.'*

A. Mannose receptor:

The Mannose receptor (MR) also known as CD206 and belongs
to the family of C — Type Lectin family of Receptors. They are
especially expressed on the surface of immature dendritic cells,
endothelial cells, and macrophages. The main function of the MRs
is the recognition and internalization of specific endogenous and
exogenous ligands. The MR has been found in the serum samples
of hospitalized patients suffering from various inflammatory
diseases.'’” It is also found that MRs are expressed in high levels
post-stroke in microglia and are very significant since these
receptors are known to clear cell debris and DAMPs helping in
post stroke recovery.'%

B. Dectin -1:

Dectin-1 expression increases on day 3 post Ischemic stroke.
Dectin-1 and Syk antagonist treatment once led to a decrease
in the levels of these molecules. Moreover, it is also found to
be responsible for the activation of NLRP3 inflammasome.'"’
Ye et al suggested that Dectin-1/Syksignalling overexpression
enhances neuroinflammation by microglial polarization in stroke
and may have a deleterious effect on brain tissue."’ In an MCAo
model of mice, Jasminoidin (JA) and Ursodeoxycholic Acid
(UA) synergistically conferred neuroprotection by inhibiting the
Dectin-1 induced NF-kB activation.""

C. Scavenger Receptors:

These are a subcategory of PRRs found on phagocytic cells such
as microglia, macrophages and dendritic cells. Previously, they
were thought to internalize oxidized Low-Density Lipoproteins
(LDL) but were later found to recognize a variety of exogenous
and endogenous ligands including DAMPs."? They are of different
classes from A to J and are also found in the cytosol post proteolytic
cleavage."® They play an important role in atherosclerosis
and might play critical role in stroke. CD36, a type B receptor
(SCARB-B), is the most studied in Ischemic stroke. It is found
to be involved in phagocytosis of monocytes and modulation of
immune cell recruitment in Ischemic stroke.''*¢

Liu etal. found that the inhibition of the TLR4 signalling pathway by
the phthalide derivative CD21 reduced tPA-induced Haemorrhagic
Transformation (HT) through Macrophage Scavenger Receptor
1 (MSR1) mediated DAMP clearance."’” In an MSR 1-deficient
mouse induced with cerebral ischemia, MSR1 was overexpressed,
thereby increasing white matter degeneration and behavioural
defects through PI3/Akt pathway, indicating their importance
in phagocytosis post-stroke.® To investigate the role of another
scavenger receptor CD36 in the infiltration of myeloid cells in the
Choroid Plexus post stroke, MCAo was carried out in neonatal
mice. It was found that CD36 mediates neutrophil and monocyte
recruitment and changes in gene expression in the Choroid Plexus
(CP) Ipsilateral to the MCAO."® Also. Scavenger Receptor A
(SRA) was found to pivot macrophages to M1 phenotype in an
MCAo animal model'* and its importance in ischemic stroke has
been investigated by Xu et al., where MCAo was performed after
knockout of SRA mice. They found that SRA plays a critical role
in pivoting macrophages to M2 phenotype too."*

D. Macrophage Receptor with Collagenous Structure
(MARCO) Receptor:

Macrophage Receptor with Collagenous Structure (MARCO) are
found to internalize DAMPs post tissue injury in stroke. They
are found in increased levels in the mouse cortex after MCAo,
indicating their role in clearing debris and in differentiating
monocytes to dendritic cells.'!

E. Triggering Receptor expressed on Myeloid Cells 2 (TREM
2):

Triggering Receptor Expressed on Myeloid Cells — 2 (TREM-2)
is found on microglial cells and they phagocytose damaged brain
cells. TREM2 mediates its action by reducing the transcription
of pro-inflammatory cytokines, chemokines and their receptors,
thereby activating microglia and promoting clearance of debris.'*
TREM-2 knockout mice showed reduced phagocytosis of injured
neurons and worsened neurological recovery. It is also suggested
that nucleic acids maybe a ligand for TREM-2 post ischemia in
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in vitro cultures of neurons by TREM2-Fc.' Similarly, Kurisu
et al. found that in microglial TREM2 knockout mice, myeloid
cell activation and phagocyte number were reduced, suggesting
their importance in post-stroke recovery and that TREM2 on
microglia played a more important role in recovery than those
present on macrophages.'**

F. Mer Tyrosine Kinase Receptors (MerTK):

Mer Tyrosine Kinase Receptor (MerTK) is found on astrocytes
and microglia in the brain. It is known to phagocytose neurons,
and its inhibition was found to prevent neuronal recovery and
promote neuronal death.'” Further, in a MerTK MCAo model
of knockout mice, MerTK inhibited synapse engulfment and
improved neurological recovery post stroke in astrocytes or
microglia by increasing synaptic density.'*

G. Tyro3, Axl and MerTK Receptors:

Tyro3, Axl, and MerTK constitute the TAM family of receptor
tyrosine kinase that are activated by their ligands Growth Arrest
Specific 6 (GAS6) and Protein S 1 (PROS1), found on phagocytes.
Protein S (PS) is an anticoagulant whose mutations are linked
with thrombosis'?” and is known to activate the TAM receptor
in neurons. Zhu et al. found that PS inhibits BBB breakdown
in hypoxic/ischemic brain in the BBB model of human brain
endothelial cells and is mediated by Tyro-3 after which PS
activates SIP1.%

H. CD47- Signal Regulated Protein Alpha (SIRPa) System:

SIRPa is a transmembrane protein that is found on neurons,
macrophages and dendritic cells. In a SIRPa knockout mice
followed by MCAo, it was found that there was reduced infarct
size, neuronal injury, oxidative stress and improved neurological
outcome which maybe mediated through upregulation of
phospho-Akt, Nuclear factor erythroid-derived 2-like 2 (Nrf2)
and heme oxygenase -1, indicating the first study to investigate
the importance of SIRPa in ischemic stroke.'*

L. Protein S(PS) Receptor:

The PS receptor constitutes 5-10% of the lipid bilayer. Its function
involves activation of signalling pathways, neurotransmission,
synapse formation and apoptosis, improving cognitive function
and inhibiting neuroinflammation."’ These receptors are decreased
below the control level in the ischemic brain due to enormous cell
death and degradation of the membrane component.'! Its role as
a therapeutic target in ischemia has been extensively discussed.'*
CD300a, a type of PS Receptor found on brain myeloid cells was
found to inhibit the DNAX activating protein of 12 kDa (DAP12)
signalling pathway, thereby enhancing phagocytosis of apoptotic
myeloid cells 1 hour after MCAo. Hence, there was decreased
production of DAMPs in the penumbra region.'*

2.1.1.3. Chemotactic Receptors:

Chemokines are small, secreted proteins that act through
chemotactic receptors to stimulate the migration of immune cells
to the site of tissue injury There are two types of chemokine
receptors: Conventional (cCKRs) and Atypical (aCKRs). There are
23 cCKRs and five major aCKR receptors: ACKR1/DARC (Duffy
Antigen Receptor for Chemokines), ACKR2/D6, ACKR3/CXCR7,
ACKR4/CCRLI (CC-Chemokine Receptors like 1) and ACKRS/
CCRL2."** The crucial role of potent phagocytic and chemotactic
receptors in Ischemic stroke is given in Fig.2.Recently, CCRS
expression is found to be increased in post stroke neurons, and its

inhibition improved post stroke recovery and cognitive memory.
It is also suggested that CCRS5 deficiency contributes to BBB
damage and increased inflammation post stroke via Tred dependent
pathway.'*s Chen et al. administered Maraviroc, an FDA approved
anti-viral drug for HIV in the MCAo model of mice and found that
it conferred Neuroprotection through CCRS by reducing infarct
sizes, decreasing cytokine production, inhibiting the MAPK and
NF-«f pathway.'*® Maraviroc also improved motor recovery in
stroke."”” Another study suggests that loss of function of CCRS,
is compensated by CCR2 and CCR3.'%

CXCL12 via its receptor CXCR4 is involved in the recruitment
of immature immune cells to the Ischemia penumbra and induces
recovery.* Similarly, to identify the role of CXCR7 in ischemic
stroke, Endotherin-1 was induced in the ipsilateral motor cortex
and striatum to induce ischemia in mice. Further, in six Ischemic
stroke patients, Cerebral cortical infarcts were isolated and
investigated for the expression of Stromal-derived factor — 1 (SDF-
1/CXCL12) and its receptors CXCR4 and CXCR?7. There was an
increased expression of CXCR7 in humans and not CXCR4 in the
penumbra, suggesting that CXCR7 maybe the primary receptor
for SDF-1 in humans but not in mice.'** Tarazzo et al. analysed
the role of Fractalkine and its receptor CX3CRI1 in transient
MCAo0 model of mice and found that the receptor concentration
increased at 24 hours and 48 hours, and overexpressed at 7 days
in activated microglial cells post ischemia, indicating that their
signalling pathway is important for the infiltration of microglia
into the infarcted tissue.'*! In contrast, Denes et al. also analysed
the expression of CX3CR1 in knock out mice and found that
infarct sizes were reduced to about 56% after MCAo compared
to the wild type.'*

CCL2 and its receptor CCR2 are involved in the monocyte
recruitment and leukocyte infiltration.'** To prove Oliver B et
al. induced Focal cerebral ischemia in CCR2 knockout mice
and found that BBB permeability and edema formation were
reduced compared to wild-type mice. Monocyte and neutrophil
infiltration were also reduced by 7 and 4-fold respectively, thereby
indicating the importance of CCR2.'* Similarly, in MCP-1 and
CCR2 deficient - GFP labelled transgenic mice, there was a
complete inhibition of neutrophils and macrophages infiltration,
4 days and 7 days post ischemia.'*s CCR2 and CX3CRI1 role in
neuroprotection was also confirmed by Giulia et al., in a ferric
chloride induced middle cerebral artery thrombus model.'*
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Fig.2: Role of Phagocytic and Chemotactic Receptors in Ischemic Stroke.
The important chemokines playing an active role in Ischemic stroke such as
MIP-1a, IP-10, CXCL12, SDF-1, Fractalkine and CCL2 bind to their respective
receptors CCRS, CCR3, CXCR4, CXCR7, CX3CR1, CCR2. CCRS and CCR3 and
activate the Tred and MAPK/Nfkb pathway to initiate BBB breakdown. CXCR4
and CXCR?7 are involved in the stroke recovery process. CX3CR1 activation
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induces infiltration of microglia to the infarct. CCR2 recruits monocytes and
neutrophils. Phagocytic receptors internalize the DAMPs and induce proteolytic
cleavage. Dectin-1 initiate Sky signalling and activate NLRP3 inflammasomes,
exacerbating brain damage. CD36, MARCO and TREM-2 phagocytose Oxidized
lipoproteins, apoptotic cells and damaged neurons respectively. SRA activation
polarizes macrophages to the M1/M2 phenotype. MerTK and TAM receptors
activate SIP1 and initiate BBB breakdown. SIRPa induces neuroprotection by
activating antioxidant enzymes.

2.1.2. Receptors of the Adaptive Immune response:

The adaptive immune response involves activating two cell types:
B cells and T cells. There are two types of T cells: CD4+ and
CD8+ T cells. CD4+ cells differentiate into Th1, Th2 to produce
proinflammatory effects and Th17, or Tregs to produce anti-
inflammatory effects. CD8+ cells release perforin and granzyme
that helps in killing of cancer cells and other virus Infected cells
through cytotoxicity. These cells are activated by binding of
extracellular ligands to specific membrane receptors called B cell
(BCR) and T cell Receptors (TCR). The adaptive immune response
is activated within 24 hours post injury during ischemic stroke.'*’

A. T cell Receptors (TCRs):

The activation of T cells is induced by the binding of specific
ligands such as Class Il MHC molecules to its receptor (TCR).
Multiple signalling pathways are activated once T cells are
engaged." ! T cells also possess co-stimulatory or co-inhibitory
molecules which either amplify or inhibit the immune response
respectively.'s*5! Different studies have evaluated the TCR gene
repertoire in Haemorrhagic stroke.'s* In Ischemic stroke, the TCR
of Treg cells were more diversely expressed in the brain than in
Splenic cells.'™* T cell activation after Ischemic stroke can be
antigen-independent since HMGB1 and other TLR ligands can also
induce a T cell response 24 hours post stroke.'>* However, they can
be antigen dependent as well where neuronal and myelin antigens
are found to induce CD69+ T cell activation in AIS patients.'s

Since T-cell Receptors are potent in the activation and mechanism
of action of T cells, Zong et al. conducted TCR sequencing in the
peripheral blood of 25 AIS patients and 10 controls. They found
that both immunosuppression and enhanced T cell responses were
active in the AIS patients.'*® Similarly, in another study, the TCRf
and CDR3 region of the TCR gene was sequenced in patients
with subarachnoid haemorrhage in addition to Delayed Cerebral
Ischemia (DCI) (severe and non-severe), which suggests that the
increased expression of these genes may serve as a biomarker
in severe DCI patients.'s” Considering the function of TCRs
in ischemic stroke, immunomodulatory drugs that block the
stimulatory effects of TCR while improving the anti-inflammatory
effects need to be further explored. But immunosuppression also
leads to poor prognosis in stroke. Many FDA approved drugs have
potential to balance the pro-inflammatory and anti-inflammatory
responses but showed adverse reactions in other diseases.'’
Therefore, therapeutic interventions aiming at TCR and its
signalling pathway should be developed with careful consideration
of the dosage, time, and location with decreased side effects in
ischemic Stroke.

B. B cell Receptors (BCR)s:
Although the role of B cells has been widely discussed by Wu et

al.,”™® the crucial role of B Cell Receptors in ischemic stroke is
yet to be investigated.

2.1.3. Receptors common to both innate and adaptive immune
systems:

A. Complement Receptors:

The complement system is a crucial part of the innate immune
system that has been previously thought to be involved only
in host defence and tissue homeostasis.'™ There are more than
50 different types of membrane proteins associated with the
complement system and therefore it is found to play a critical role
in other physiological functions such as synapse pruning, tissue
regeneration, clearance of immune complexes and angiogenesis. '
Several complement system components were found in the post-
stroke ischemic brain ''* and inhibition of the complement
components were observed to reduce the ischemic damage.'®

Among the different complement components, C3a mediates an
immune response by binding to its receptor C3aR. A detailed
review on the role of C3aR in ischemic stroke has already been
discussed.'® C3a, a 21-amino acid neuropeptide derived from
the VGF precursor protein (TLQP-21) are specific ligands for
C3aR. The C3a Receptor is expressed on many central nervous
system cells and involves different functions such as neuronal
differentiation, cytokine expression and synaptic modulation.
Hence, their role during the ischemic stroke recovery phase depends
on the type of cells they are expressed on and the duration of the
response.'® C3aR signalling has been shown to improve recovery
by inducing neural plasticity and synaptogenesis; therefore, several
C3aR antagonists have been developed to enhance long-term
stroke recovery. In a mouse MCAo model of Ischemic stroke,
C5aR antagonists improved neurological outcome 24 hours after
Ischemic injury by causing a significant reduction in the size of
the infarct volume suggesting that modulating the C5aR activity
differentially regulates neuronal damage.'®

B. Fc receptors:

Immunoglobulins have a Fragment Antigen Binding (Fab) region
that binds to an antigen and A Fragment Crystallizable (Fc) region
that binds to different FcRs. These receptors bind isotypes of
immunoglobulins including IgG, IgM, IgE, IgD and IgA. Specific
FcR exists for each antibody sub-class, with FcoR binding to
IgA, FeyR binding to IgG, FcoR binding to IgD, FceR binding to
IgE, and FcuR binding to IgM.'¥” Most studies involving the Fc
receptors focus on the FcyR’s role in Ischemic stroke. Komine-
Kobiyashi et al used FcyR knockout mice and induced MCAO,
where the receptor deficient mice showed reduced infarct sizes 72
hours post stroke. They also proved the importance of the FcyR
in progression of neuronal damage and proliferation of microglial
cells.'® Therapeutically, Intravenous Immunoglobulin (IVIG) is
an immunomodulator approved for treatment of various other
neurological diseases and prevents neuronal death in stroke.'®

C. Cytokine Receptors:

Inflammatory cytokines are glycoproteins released by brain cells
such as microglia, glial cells, endothelial cells and neurons. An
increase in the production of pro-inflammatory cytokines and a
decrease in anti-inflammatory cytokines is correlated with worse
clinical outcomes and large infarct sizes.'”*!”" Understanding the
timing of release of these cytokines determines their utility as
therapeutic agents.'”* Fig.3 depicts the function of TCRs, receptors
of the Complement, Fc system and various cytokine receptors
in Ischemic stroke. TNF-a binds to leukocytes via TNFR1 and
TNFR2.Hansan et al. evaluated the plasma levels of these receptors
in 33 patients with AIS and 10 healthy controls and found that their
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levels were increased with stroke severity but had no correlation
with outcomes. A decreased population of non-classical monocytes
and neutrophils expressing TNFR1 and an increased population
of neutrophils expressing TNFR2, was seen, implicating the
importance of the peripheral immune response in mediating the
acute phase of stroke.'” Similarly, in another study, blood samples
were drawn from 34 patients at the time of admission (<8hrs)
and at 72 hours post-stroke. They found that the plasma levels
of TNFR1 and TNFR2 were increased at 8 hours, whereas there
was no significant change in TNFR1 and TNFR2 at 72 hours,
suggesting that add-on therapy targeting these receptors can be
developed as a therapeutic target.'™

In one study, Bone Marrow cells expressing high levels of ILR1
antagonists were induced in MCAO mice, where it was found
that ILR 1a increased the expression of TNF, IL-10 and IL-4
while decreasing the expression of 1L-12p70, IL-1 and TLR2.
Hence, correlating with improved stroke outcomes, the study
described the mechanism by which Bone Marrow cells promote
neuroprotection.'”s Similarly, in another study Involving 844
strokel patients and 668 Controls, genetic variation analysis
was done in IL1Ra and found that three SNPs (rs380092) were
associated with IL1Ra supporting their role in Ischemic Stroke.'”
IL-6 binds to IL-6R and recruits Glycoprotein (gp130) further
activating the PI3K/Akt, MAPK and the Janus Kinase (Jak)/Signal
Transducer and Activator of Transcription (STAT) molecules,
increasing the risk of Ischemic stroke. Blocking IL-6 signalling
has been found to reduce the risk of stroke.'””'7® Like, IL-1R, three
SNPs were found to be associated with genetic polymorphisms
in IL-6R.'” Finally, the binding of IL-10 to its receptor (IL-10R)
initiates the anti-inflammatory response in stroke. The mRNA
levels of IL-10R are increased on astrocytes in the ischemic
penumbra and one study found that IL-10 signalling downregulates
IL-17A production on Th17 cells in the Ischemic brain. '
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Fig.3. Role of TCRs, Complements and Cytokine receptors in Ischemic
stroke: On binding of DAMPs such as HMGB1, neuronal and myelin antigens
to diverse TCRs, T cells activate an inflammatory response that may induce
neuroinflammation in the early phase and neuroprotection in the late phase by

activating the Lck, Fyn, ZAP-10 and ITAMs, thereby improving BBB function.
The complement receptor C3aR is involved in neuronal and synaptogenic recovery
whereas the FcyR Immunoglobulin receptor induces neuronal damage. TNFR1
activates monocyte and neutrophil infiltration. IL-1R increases TNF, IL-10 and
IL-4 while decreasing IL-12p70, IL-1p and TLR2. IL-6R along with its co-
receptor gp130 activates the JAK/STAT and PI3K/Akt pathway to induce brain
damage. Activation of IL-10R decreases the production of Th17 cells while
increasing IL-17A levels, which subsequently reduces neuronal damage and
induces neuroprotection.

2.2 Temporal dynamics of immune receptors during the
different phases of stroke:

While the production of various inflammatory mediators and
role of immune cells in different phases of ischemic stroke are
well established. Recently, it has been discovered that temporal
dynamics of receptors activation and deactivation plays critical
role in stroke patients. TLR2 expression declined at Day 14 in a
photothrombotic mouse model called TLR2sm-fluc-GFP mice.'®!
Inflammasome expression increased at 3-5 days post stroke and
declined at day 7.'8* Atsuchi et al. studied the transcriptome
profile of the DAMP-related genes in an experimental stroke
model at different time points ranging from day 1 to day 28
and found that expression of DAMPs increases at the acute and
sub-acute phase of stroke. Some of the up-regulated genes of
immune receptors in these two phases are TLR 2, 4, 6, 7, 8 and
13, Clec7a, MSR1, CD57, Trem2. Ccr, Cxcr, Clec4d and Clecde
peaked at Day 1-14 while C3arl, Clec7a, Trem2, Msrl, NLRP3,
CD36 peaked after day 3-14. The phagocytotic transcriptome
profile indicates an increase in phagocytosis at the sub-acute
phase from 3 days to 2 months post-stroke.'® TLR expression
was continuously up-regulated through all stages of stroke with a
peak concentration from 3 days to 1-month post-stroke.'®* CCR5
and CXCR4 expression was increased at days 3 to 11 days post
stroke in CD11 positive cells, astrocytes and neurons.'®s TNF
Receptors are up regulated from 4 to 6 hours till up to 5 days post-
stroke.'® The first randomized, double-blind, placebo-controlled
trial using I.V. injected recombinant human (rh)IL-1Ra in acute
stroke patients (given within the first 6 h of stroke onset) showed
a reduction in neutrophil count, plasma CRP, and IL-6 compared
to the placebo with minimal to no disability three months after
stroke. IL-R receptor expression is known to increase 3 days
post-stroke.'®¢ Inhibition of C3aR receptor in the acute phase
and facilitation in the later phase induces functional recovery in
stroke.'®” Hence, more studies related to the temporal expression
of the most relevant immune receptors involved in stroke are
necessary to evaluate a therapeutic window for these receptors
for translational stroke research.

Therapeutic interventions targeting the immune receptors:
So far, tissue Plasminogen Activator (tPA) administration and

endovascular thrombectomy are the only approved treatments
for ischemic stroke.'®® The limitation for this therapy is the time

Table 1: Summary of clinical studies and research papers denote the various antagonists developed targeting their respective

receptors for Ischemic stroke.

S. Model Compound Receptor Therapeutic Outcomes Reference
No.
1 Human ApTOLL TLR4 Low NIHSS (NIH Stroke Scale) score at 72 hours [192]

(-10%), smaller final infarct volume (1%) and low-
ered disability at 90 days post-stroke. (1.76 - 5.00)
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2 Mice MCAO | Pam2/3CSK4, 1a, 1b TLR1/2 and | Reduced brain infarct size (1.9 £ 0.5% vs 9.4 + 2.2%) | [193]
TLR2/6 Reduced acute mortality (4.3% vs 24.2%), Preserved
neurological function (8.22 + 0.64 vs 3.91 + 0.57),
Attenuated brain edema (84.61 + 0.08% vs 85.29 +
0.09%). Preserved BBB function as evidenced by
decreased leakage of serum albumin (0.528 + 0.026
vs 0.771 + 0.059) and Evans Blue (9.23 + 0.72 pg/mg
vs 12.56 + 0.65 pg/mg) into brain tissue.
3 MCAO in TAK-242 TLR4 Reduced brain infarct size (12.5%) compared to un- | [194]
C57BL/6 treated mice (21.3%; #P00.05). Improved neurologic
function (6.73) compared with untreated mice (4.38;
#P00.05).
4 MCAO in ApTLR#4F and ApTL- | TLR4 49% reduction in infarct size. Improved neurological | [195]
Rats R#4FT outcome at 2-and 7-days post-stroke.
5 Precondition- | DPCPX (8-cyclopen- | Adenosine | Ischemic Preconditioning. [196]
ing followed | tyl-1,3-dipropylxan- A1l Receptor | Reduction in the cortical and subcortical infarct
by MCAO in | thine) volume following 120 minute MCAO.
Rats
6 MCAO Rats | Pyridoxalphos- P2 Receptor [ Infarct volume reduced upto day 7 whereas func- [60]
phate-6-azophe- tional recovery was sustained till Day 28.
nyl-2",4"-disulphonic
acid (PPADS)
7 tMCAO Mice | Inhibitory oligodeox- | TLR9 Decreased infarct size in a dose-dependent man- [197,198]
ynucleotide (iCpG- ner. Suppression of NFkb, IRF7, IL-1pB, TNF-a, and
ODN) IFN-B and
8 Rat MCAO Luteolin TLR5 and Reduction in infarct volume at 24-72 hrs. Reduced [199]
Model TLR4 Brain edema: around 86% in 72 hours
9 Mice Photo- | Al4 CCR5 Infarct volume reduced 7 days post-stroke, signifi- [200]
thrombosis cant reduction in BBB permeability
and OGD
10 Adult SD Rats | CX549 CXCR4 Inhibition of CXCL12 - mediated chemotaxis, sig- [201]
and C57BL/6 nificantly improved behavioural function, reduced
mice. brain infarction, and suppresses the expression of
inflammatory markers.
11 | Adult CDI AMD3100 CXCR4 Brain edema-induced change of water content, IgG [ [202,203]
Mice protein leakage, Evans blue extravasation, occludin,
and ZO-1 expression in ipsilateral hemisphere were
alleviated by acute treatment of AMD3100 3 days
post MCAO.
12 | Mice MCAO | Maraviroc CXCR4 Anti-inflammatory and anti-apoptotic. [204-206]
13 tMCAO mice | SB290157 C3aR Reduced infarct volume at 48 hours and improved [207]
neurological and functional recovery. Suppression of
T cell infiltration.
14 MCAO Mice |]JR14a C3aR Reduced, infarct volume, BBB permeability and neu- | [208]
ral impairment. Suppression of TNF-a and IL-6.
15 OGD on cor- | DF3016A C5aR Restorage of intracellular calcium levels. [209]
tical neurons
16 | C57BL6 mice [ Intravenous Immuno- | FcR Polarization of Microglia towards the M2 Phenotype. | [210]
globulin (IVIG)
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window which includes <4 hours for tPA and <24 hours for thrombectomy. More studies are focused on stem cell therapy and
microRNA-based post stroke treatment.'®*'** Unfortunately, most of these therapies failed during clinical trials due to inability of
target specific delivery, avoidance of degradation and pluripotency of stem cells. Hence the development of therapeutics with minimal
side effects and targeted time- and dose-dependent delivery is pivotal in modern stroke therapeutics.!”! Tables 1 and 2 summarize the
antagonists and inhibitors developed against the various immune receptors, the model organism used, and its effects in Ischemic stroke.

Table 2: Summary of the different inhibitors developed targeting their respective receptors or their associated signalling

molecules/mediators in Ischemic stroke.

S.No. | Model Inhibitor Receptor Effects References
1 Adult SD Rats Baicalin TLR2 and TLR4 | Reduced infarct size and volume and Sup- [211]
pression of TLR2/4 signalling.
2 Mice MCAO Salvianolic acid B CD36 Sal B significantly improved neurological [212-214]
deficits, reduced infarct size, attenuated
cerebral edema and GFAP, Ibal, IL-1, IL-6,
TNF-a and Cleaved-caspase 3 production
was reduced.
3 Mice MCAO Curcumin NLRP3 Curcumin ameliorated white matter (WM) | [215,216]
lesions and brain tissue loss 21 days post-
stroke and improved sensorimotor function
3, 10, and 21 days after stroke. Decreased
pyroptosis-related proteins.
4 Rat MCAO Phthalide derivative | MSR1 PRXI1 clearance and TLR4 inhibition. [117]
CD21
5 Adult CD1 mice |apoE-mimetic TREM-2 Improvement in both short-term and long- | [217,218]
peptide COG1410 term neurological functions, reduced brain
(TREM-2 agonist) edema, inhibited microglia/macrophage
activation and neutrophil infiltration.
6 C57BL/6 Mice UNC2025 MerTK Decreased platelet activation and protected | [219]
animals from pulmonary embolism and
arterial thrombosis without increased bleed-
ing times. Anti-thrombolytic activity.
7 MCAO Mice Proprotein conver- | CD44 Significantly improved neurological deficits | [220]
tase subtilisin/kexin and reduced the volume of cerebral infarc-
type 9 inhibitor tion. Activation of GPNMB/CD44 pathway.
(PCSK9i)
8 22 Human pa- Fingolimod Sphingosine - Patients with acute and anterior cerebral [221]
tients with acute 1 - phosphate circulation occlusion stroke, oral fingolimod
stroke receptor within 72 h of disease onset was safe, limited
secondary tissue injury from baseline to 7
d, decreased microvascular permeability, at-
tenuated neurological deficits and promoted
recovery.
Conclusion extensive research to uncover their function in Ischemic stroke.

Although the function of each receptor is known, their effect on the
neuroinflammation mechanism of ischemic stroke depends on the
time, duration, and extent of neurological damage, co-morbidities,
age, gender, environmental influence and other unknown factors.
For example, the levels of IL-6R vary in the acute phase, chronic
phase and recovery phase of stroke. Moreover, females are more
prone to Stroke and poor outcomes occur during their old age as
compared to males. Patients with high blood pressure and diabetes
possess an increased risk of stroke than those with no such co-
morbidities. Epigenetic modulators have been known to change
gene expressions in ischemic stroke, thereby influencing stroke
outcomes. The immune mechanism of stroke depends on these
factors and therefore, more studies are required to uncover the
function of these receptors concerning the aforementioned factors
to understand the overall mechanism of Ischemic stroke. There
are other unexplored receptors of the immune system that warrant

Furthermore, there are other receptors on other cells apart from
the immune system that crosstalk with these immune receptors,
which may influence the treatment and outcome that is beyond
the scope of our review. Even after decades of research, stroke
is still classified as the third leading cause of death globally.
A comprehensive study of immune receptors at different time
points with the inclusion of epigenetic mechanisms and other co-
morbidities in a sex-specific manner may be the key to identifying
potential therapeutic targets.
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