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Abstract

This manuscript reviews the diff erential eff ects of anesthesia on brain networks in neurological disorders and their implications for brain-
computer interface (BCI) procedures. Drawing on empirical literature, it highlights disorder-specifi c anesthetic considerations for conditions 
such as Parkinson’s disease, epilepsy, and amyotrophic lateral sclerosis (ALS). A simulated logistic regression model, based on synthetic 
data approximating real-world clinical scenarios (n=1,000), examines factors infl uencing BCI implantation success (defi ned as no major 
complications and signal quality ≥85%). Key fi ndings include signifi cant main eff ects of age, vascular proximity, electrode density, and 
disorder severity on success probability, with non-signifi cant eff ects for anesthesia type. Implications for tailored anesthetic strategies 
are discussed, alongside limitations of the simulation approach. Future research should validate these insights with real clinical data.
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Introduction

Anesthesia disrupts brain networks in ways that vary according 
to underlying neuropathology. For instance, propofol reduces 
connectivity in networks associated with consciousness, with 
potential exacerbation in neurodegenerative conditions.1 

Electroencephalography (EEG)-based brain-computer interfaces 
(BCIs) in medical applications underscore the importance of 
disorder-specifi c anesthetic paradigms to mitigate artifacts induced 
by anesthesia.

In Parkinson’s disease and related movement disorders, 
dexmedetomidine is often preferred for procedures like deep 
brain stimulation (DBS) or BCI implantation, as it facilitates 
intraoperative microelectrode recordings (MER) without 
suppressing critical thalamic signals, unlike volatile anesthetics.2,3 

Patients with dyskinesia may require sedation to reduce movement 
artifacts, though this must be balanced against autonomic 
instabilities common in these disorders.

For epilepsy, propofol-based anesthesia is commonly used during 
electrode placement, although intraoperative seizures can still 
occur under general anesthesia.4 Low-dose propofol can activate 
cortical electroencephalograms (ECoGs), potentially aiding in 
the accurate identifi cation of epileptic foci during glioma-related 
epilepsy surgery.5

In amyotrophic lateral sclerosis (ALS) or tetraplegia, endovascular 
BCIs (e.g., Synchron) have demonstrated feasibility under 
sedation.6 However, severe bulbar involvement heightens 
aspiration risks, particularly with volatile anesthetics.7 Total 
intravenous anesthesia (TIVA) may minimize these risks while 
preserving cortical signals suitable for communication decoding.8 
Dexmedetomidine has also been explored as a primary induction 
agent, with evidence suggesting neuroprotective and anti-
neuroinfl ammatory properties.9,10

The interaction between anesthesia regimen (e.g., TIVA with 
propofol/remifentanil, dexmedetomidine, or volatile agents) and 
neurological disorder severity (measured on scales such as the 
ALS Functional Rating Scale-Revised [ALSFRS-R; 0-48] for 
ALS, or analogous metrics like the Unifi ed Parkinson’s Disease 
Rating Scale [UPDRS] for Parkinson’s or seizure frequency for 
epilepsy) is pivotal for BCI outcomes. This interaction illustrates 
how anesthetic choices can either alleviate or intensify disorder-
specifi c challenges, such as neural signal suppression in severe 
cases or autonomic instability in neurodegenerative states.

In neurosurgical contexts like DBS, anesthesia is customized to the 
disorder: awake techniques enable MER assessment in Parkinson’s 
disease,11 while general anesthesia helps manage seizures in 
patients with epileptogenic foci.12 Similar principles extend to 
BCI procedures, where anesthetics must maintain high-fi delity 
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neural activity for electrode calibration while addressing risks 
like respiratory compromise in ALS or dyskinesia in Parkinson’s.

This study uses a simulated logistic regression model to explore 
feature interactions, where the effect of one variable on BCI 
success depends on another. We focus on an explicit interaction 
between age and vascular proximity (derived from neuroimaging), 
while noting potential implicit interactions (e.g., anesthesia type 
with disorder severity) in the data generation.

Methods

Data Simulation

A synthetic dataset of 1,000 hypothetical patients was generated 
to approximate real-world clinical scenarios, drawing on 
parameter distributions informed by literature (e.g., age from 
normal distribution with mean 50 years, SD 15; disorder severity 
uniformly from 0-48; vascular proximity exponentially distributed 
with mean 3 mm). Binary outcomes (success: 1 = no major 
complications and signal quality ≥85%; 0 = otherwise) were 
simulated using a logistic function incorporating main effects and 
a negative interaction between age and vascular proximity (closer 
proximity amplifies age-related risks). Anesthesia types (TIVA, 
dexmedetomidine, volatile) and BCI types (cortical, subcortical, 
endovascular) were categorically encoded, with implicit synergies 
(e.g., TIVA buffering severe disorders) added via correlated noise. 
Body mass index (BMI) followed a normal distribution (mean 
25, SD 5). Electrode density was normally distributed (mean 100 
channels, SD 20). This simulation correlates with clinical data 
from BCI trials6 and DBS studies,11 but is not derived directly 
from them.

Statistical Modeling

A logistic regression model was fitted using the simulated data, 
with BCI success as the binary outcome. Predictors included age, 
vascular proximity, electrode density, disorder severity, anesthesia 
type (reference: dexmedetomidine), BCI type (reference: cortical), 
BMI, and an explicit interaction term (age × vascular proximity). 
Model fit was assessed via pseudo-R² (McFadden’s) and log-
likelihood ratio test. Marginal effects were computed to quantify 
average changes in success probability per unit change in 
predictors, accounting for interactions. Partial dependence was 
estimated for the age-vascular interaction, holding other features 
at means. Feature pseudo-importances were derived from absolute 
t-values. Analyses were conducted in Python using statsmodels. 
Non-significant terms (p > 0.05) were retained for completeness 
but interpreted cautiously.

Results

Overall Model Fit

The model yielded a pseudo-R² of 0.5074, explaining approximately 
50% of the variance in success probability. The log-likelihood ratio 
test confirmed predictive utility (p < 1e-97).

Main Effects

•	 Age: Negative coefficient (-0.0695, p=0.003), indicating 
reduced success odds with increasing age.

•	 Vascular proximity: Positive coefficient (0.9220, p=0.024), 
with greater vessel distance improving outcomes.

•	 Electrode density: Strongly positive coefficient (0.0011, 

p<0.001), underscoring benefits of higher-channel BCIs.
•	 Disorder severity: Negative coefficient (-0.0370, p<0.001), 

as higher severity complicates implantation.
•	 Anesthesia types: Non-significant (TIVA: 0.1273, p=0.657; 

volatile: -0.0805, p=0.782), though TIVA showed a slight 
positive trend.

•	 BCI types: Non-significant (subcortical: -0.3553, p=0.225; 
endovascular: -0.1611, p=0.582).

•	 BMI: Non-significant (-0.0125, p=0.614).

Interaction Effects

The age × vascular proximity interaction had a negative coefficient 
(-0.0023, p=0.760), which was not statistically significant, likely 
due to simulation noise. Marginal effects were:

•	 Age: -0.0064 (p=0.002).
•	 Vascular proximity: +0.0848 (p=0.022).
•	 Interaction: -0.0002 (p=0.760). Other features showed 

marginal effects <1.2%.

Age Vascular 
proximity 
1 mm

Vascular 
proximity 
 2 mm

Vascular 
proximity 
 3 mm

Vascular 
proximity 
4 mm

Vascular 
proximity 
 5 mm

20 0.9415 0.9748 0.9893 0.9955 0.9981
27 0.9089 0.9594 0.9824 0.9925 0.9968
33 0.8608 0.9351 0.9711 0.9874 0.9945
40 0.7931 0.8979 0.9528 0.9789 0.9907
47 0.7038 0.8431 0.9239 0.9649 0.9841
53 0.5956 0.7664 0.8796 0.9421 0.9731
60 0.4773 0.6670 0.8146 0.9060 0.9548
67 0.3614 0.5501 0.7254 0.8509 0.9250
73 0.2597 0.4274 0.6137 0.7717 0.8779
80 0.1787 0.3131 0.4886 0.6669 0.8075

Table 1: Partial dependence table for Age × Vascular Proximity 
interaction. Predicted probability of BCI implantation success (no major 
complications and signal quality ≥85%) as a function of patient age 
(years) and vascular proximity (distance from electrode placement to 
nearest blood vessel in mm). Values were computed holding all other 
model features at their mean values in the simulated dataset. Note that 
the interaction term was not statistically significant (p=0.760), so patterns 
are exploratory.

Feature Absolute t-Value
Electrode density 12.93
Disorder severity 4.20
Age 2.99
Vascular proximity 2.26
BCI type (Sub-cortical) 1.21
Constant 0.90
BCI type (Endovascular) 0.55
BMI 0.50
Anesthesia type (TIVA) 0.44
Age × Vascular 0.31
Anesthesia type (Volatile) 0.28

Table 2: Relative influence of predictors in the logistic regression model, 
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approximated by absolute t-values (higher values indicate stronger 
statistical evidence of effect on BCI success probability).

Partial dependence analysis for age and vascular proximity 
(holding others at means) is summarized in the table 1. Note that 
due to the non-significant interaction, these patterns should be 
viewed as exploratory.

Electrode density exerted the strongest influence, followed by 
disorder severity, age, and vascular proximity (table 2).

Discussion

The findings from this simulation study, grounded in a 
synthesis of clinical literature, provide a structured framework 
for understanding how patient-specific factors and procedural 
choices influence brain-computer interface (BCI) implantation 
outcomes. While the model relies on synthetic data, its parameter 
distributions and effect directions were informed by real-world 
evidence from BCI trials,6 deep brain stimulation (DBS) studies,11 

and anesthetic neurophysiology.1–3, 5 The results highlight electrode 
density as the dominant predictor of success, followed by disorder 
severity, age, and vascular proximity all statistically significant 
main effects. These align with clinical priorities: higher-channel 
systems (e.g., 128–256 electrodes) improve signal fidelity and 
decoding accuracy in motor BCIs,13 while severe neurological 
impairment increases intraoperative instability and postoperative 
adaptation challenges.14

The non-significant role of anesthesia type in the model warrants 
careful interpretation. Although total intravenous anesthesia 
(TIVA) showed a modest positive coefficient (+0.1273), it did 
not reach statistical significance (p=0.657). This may reflect 
insufficient power in the simulated dataset or, more plausibly, 
the context-specific nature of anesthetic effects. In real procedures, 
TIVA with propofol/remifentanil is often chosen not for direct 
impact on success probability but to preserve high-frequency 
neural oscillations critical for BCI calibration.8, 15 Volatile agents, 
by contrast, suppress thalamic and cortical gamma activity,3 which 
could degrade signal quality in subcortical targeting particularly in 
Parkinson’s disease. The lack of significance in this model likely 
stems from the absence of an explicit anesthesia × disorder severity 
interaction term, despite its inclusion in the data-generating 
process. Future models should test this interaction directly, as 
TIVA may confer disproportionate benefits in high-severity cases 
(e.g., ALSFRS-R < 20), where autonomic volatility and respiratory 
fragility are pronounced.7

The age × vascular proximity interaction, though non-significant 
(p=0.760), revealed exploratory patterns consistent with clinical 
intuition. At age 80, predicted success dropped from 81% at 5 mm 
vessel distance to 18% at 1 mm a 63 percentage-point decline. This 
reflects the compounded risk of hemorrhage in elderly patients 
with fragile vasculature.16 While statistical noise precluded formal 
inference, the partial dependence structure supports preoperative 
neuroimaging optimization, such as using high-resolution vessel-
encoded arterial spin labeling (ASL) or intraoperative robotics 
to maximize electrode-vessel separation.17 This is particularly 
relevant for cortical surface arrays, where vascular mapping can 
guide grid placement.

BCI modality also showed non-significant effects, but trends 
suggest differential risk profiles. Subcortical implants trended 
negative (-0.3553, p=0.225), possibly due to deeper trajectory risks 
(e.g., capsular infarction), while endovascular approaches (e.g., 
Stentrode) had a smaller penalty (-0.1611, p=0.582). This may 
reflect reduced parenchymal disruption in stent-based systems,6 

though long-term biocompatibility and signal stability remain 
under investigation. Higher electrode density appeared to mitigate 
modality-specific risks, hinting at an unmodeled BCI type × 
density interaction ripe for future exploration.

The pseudo-importance rankings reinforce a hierarchical view 
of modifiable versus non-modifiable risks. Surgeons can directly 
influence electrode density and vascular precision, whereas age and 
disorder severity are fixed. This underscores the value of precision 
neurosurgery integrating robotic stereotaxy, intraoperative MRI, 
and AI-driven trajectory planning to shift patients toward higher-
success regions of the outcome space.

From a neurophysiological perspective, anesthetic choice 
modulates the signal-to-noise ratio (SNR) of neural recordings. 
Dexmedetomidine preserves alpha coherence in thalamocortical 
loops,2 facilitating MER in DBS and potentially improving target 
confirmation in BCI. Propofol, while suppressing awareness, can 
enhance local field potential (LFP) amplitude at low doses,5 aiding 
epileptiform focus mapping. These mechanisms were not explicitly 
encoded in the simulation but represent latent mediators that real-
data models could capture via multilevel or mediation analysis.

Limitations beyond data syntheticity include the binary outcome 
definition. Success was defined as ≥85% signal quality and no 
major complications, but real BCI efficacy depends on longitudinal 
performance (e.g., bits-per-minute in communication, accuracy in 
cursor control). The 85% threshold, while reasonable, is arbitrary; 
sensitivity analyses across thresholds (70–95%) would strengthen 
robustness. Additionally, the model omitted pharmacogenomics 
(e.g., CYP2B6 variants affecting propofol metabolism), 
comorbidities (e.g., diabetes increasing infection risk), and surgeon 
experience, all known confounders in neurosurgical outcomes.18 

Intraoperative modeling during neurosurgey has already shown 
its impact for intraoperative co-oximetry, evoked potentials and 
electroencephalography.19

Translational implications are threefold:

1.	 Risk stratification: Use preoperative models integrating 
age, neuroimaging, and disorder severity to identify high-
risk subgroups (e.g., elderly patients with <2 mm vascular 
clearance) for enhanced monitoring or alternative BCI 
modalities.

2.	 Anesthetic tailoring: Favor TIVA or dexmedetomidine in 
signal-sensitive procedures (e.g., motor decoding in ALS, 
MER in Parkinson’s), reserving volatiles for short, seizure-
prone cases where depth is prioritized over fidelity.

3.	 Technology integration: Invest in high-density, vascular-
aware electrode systems and intraoperative feedback loops 
to dynamically adjust placement.

Future directions include:

•	 Validation using multicenter BCI registries (e.g., Neuralink, 
Synchron, or Paradromics trial data).

•	 Explicit modeling of interactions (anesthesia × severity, 
density × modality) using flexible frameworks like generalized 
additive models (GAMs) or gradient boosting.

•	 Incorporation of SHAP (SHapley Additive exPlanations) 
values for interpretable, non-linear feature contributions.

•	 Longitudinal extensions linking implantation success to 
functional outcomes (e.g., communication rate at 6 months).

In conclusion, this work demonstrates that while anesthesia 
type may not dominate BCI success in isolation, its interaction 
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with patient and procedural factors is clinically meaningful. 
By combining literature-driven insights with interaction-aware 
modeling, we lay a foundation for personalized neurotechnology 
protocols that optimize both safety and signal integrity.

Limitations

This analysis relies on synthetic data, which may not fully 
capture real-world variability or noise. Non-signifi cant p-values 
for interactions and anesthesia types indicate the need for larger, 
empirical datasets. The arbitrary success threshold (≥85% 
signal quality) and simplifi ed simulation assumptions limit 
generalizability. Validation against real BCI trial data6 is essential.
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