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Abstract

This manuscript reviews the differential effects of anesthesia on brain networks in neurological disorders and their implications for brain-
computer interface (BCI) procedures. Drawing on empirical literature, it highlights disorder-specific anesthetic considerations for conditions
such as Parkinson’s disease, epilepsy, and amyotrophic lateral sclerosis (ALS). A simulated logistic regression model, based on synthetic
data approximating real-world clinical scenarios (n=1,000), examines factors influencing BCI implantation success (defined as no major
complications and signal quality >85%). Key findings include significant main effects of age, vascular proximity, electrode density, and
disorder severity on success probability, with non-significant effects for anesthesia type. Implications for tailored anesthetic strategies
are discussed, alongside limitations of the simulation approach. Future research should validate these insights with real clinical data.
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Introduction

Anesthesia disrupts brain networks in ways that vary according
to underlying neuropathology. For instance, propofol reduces
connectivity in networks associated with consciousness, with
potential exacerbation in neurodegenerative conditions.'
Electroencephalography (EEG)-based brain-computer interfaces
(BCIs) in medical applications underscore the importance of
disorder-specific anesthetic paradigms to mitigate artifacts induced
by anesthesia.

In Parkinson’s disease and related movement disorders,
dexmedetomidine is often preferred for procedures like deep
brain stimulation (DBS) or BCI implantation, as it facilitates
intraoperative microelectrode recordings (MER) without
suppressing critical thalamic signals, unlike volatile anesthetics.>?
Patients with dyskinesia may require sedation to reduce movement
artifacts, though this must be balanced against autonomic
instabilities common in these disorders.

For epilepsy, propofol-based anesthesia is commonly used during
electrode placement, although intraoperative seizures can still
occur under general anesthesia.* Low-dose propofol can activate
cortical electroencephalograms (ECoGs), potentially aiding in
the accurate identification of epileptic foci during glioma-related

epilepsy surgery.’

In amyotrophic lateral sclerosis (ALS) or tetraplegia, endovascular
BCIs (e.g., Synchron) have demonstrated feasibility under
sedation.® However, severe bulbar involvement heightens
aspiration risks, particularly with volatile anesthetics.” Total
intravenous anesthesia (TIVA) may minimize these risks while
preserving cortical signals suitable for communication decoding.®
Dexmedetomidine has also been explored as a primary induction
agent, with evidence suggesting neuroprotective and anti-
neuroinflammatory properties.”!

The interaction between anesthesia regimen (e.g., TIVA with
propofol/remifentanil, dexmedetomidine, or volatile agents) and
neurological disorder severity (measured on scales such as the
ALS Functional Rating Scale-Revised [ALSFRS-R; 0-48] for
ALS, or analogous metrics like the Unified Parkinson’s Disease
Rating Scale [UPDRS] for Parkinson’s or seizure frequency for
epilepsy) is pivotal for BCI outcomes. This interaction illustrates
how anesthetic choices can either alleviate or intensify disorder-
specific challenges, such as neural signal suppression in severe
cases or autonomic instability in neurodegenerative states.

In neurosurgical contexts like DBS, anesthesia is customized to the
disorder: awake techniques enable MER assessment in Parkinson’s
disease,' while general anesthesia helps manage seizures in
patients with epileptogenic foci.'”? Similar principles extend to
BCI procedures, where anesthetics must maintain high-fidelity
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neural activity for electrode calibration while addressing risks
like respiratory compromise in ALS or dyskinesia in Parkinson’s.

This study uses a simulated logistic regression model to explore
feature interactions, where the effect of one variable on BCI
success depends on another. We focus on an explicit interaction
between age and vascular proximity (derived from neuroimaging),
while noting potential implicit interactions (e.g., anesthesia type
with disorder severity) in the data generation.

Methods
Data Simulation

A synthetic dataset of 1,000 hypothetical patients was generated
to approximate real-world clinical scenarios, drawing on
parameter distributions informed by literature (e.g., age from
normal distribution with mean 50 years, SD 15; disorder severity
uniformly from 0-48; vascular proximity exponentially distributed
with mean 3 mm). Binary outcomes (success: 1 = no major
complications and signal quality >85%; 0 = otherwise) were
simulated using a logistic function incorporating main effects and
anegative interaction between age and vascular proximity (closer
proximity amplifies age-related risks). Anesthesia types (TIVA,
dexmedetomidine, volatile) and BCI types (cortical, subcortical,
endovascular) were categorically encoded, with implicit synergies
(e.g., TIVA buffering severe disorders) added via correlated noise.
Body mass index (BMI) followed a normal distribution (mean
25, SD 5). Electrode density was normally distributed (mean 100
channels, SD 20). This simulation correlates with clinical data
from BCI trials® and DBS studies,'" but is not derived directly
from them.

Statistical Modeling

A logistic regression model was fitted using the simulated data,
with BCI success as the binary outcome. Predictors included age,
vascular proximity, electrode density, disorder severity, anesthesia
type (reference: dexmedetomidine), BCI type (reference: cortical),
BMI, and an explicit interaction term (age x vascular proximity).
Model fit was assessed via pseudo-R? (McFadden’s) and log-
likelihood ratio test. Marginal effects were computed to quantify
average changes in success probability per unit change in
predictors, accounting for interactions. Partial dependence was
estimated for the age-vascular interaction, holding other features
at means. Feature pseudo-importances were derived from absolute
t-values. Analyses were conducted in Python using statsmodels.
Non-significant terms (p > 0.05) were retained for completeness
but interpreted cautiously.

Results
Overall Model Fit

The model yielded a pseudo-R? of 0.5074, explaining approximately
50% of the variance in success probability. The log-likelihood ratio
test confirmed predictive utility (p < 1e-97).

Main Effects

e Age: Negative coefficient (-0.0695, p=0.003), indicating
reduced success odds with increasing age.

*  Vascular proximity: Positive coefficient (0.9220, p=0.024),
with greater vessel distance improving outcomes.

*  Electrode density: Strongly positive coefficient (0.0011,

p<0.001), underscoring benefits of higher-channel BCls.

»  Disorder severity: Negative coefficient (-0.0370, p<0.001),
as higher severity complicates implantation.

e Anesthesia types: Non-significant (TIVA: 0.1273, p=0.657;
volatile: -0.0805, p=0.782), though TIVA showed a slight
positive trend.

*  BCI types: Non-significant (subcortical: -0.3553, p=0.225;
endovascular: -0.1611, p=0.582).

e BMI: Non-significant (-0.0125, p=0.614).

Interaction Effects

The age x vascular proximity interaction had a negative coefficient
(-0.0023, p=0.760), which was not statistically significant, likely
due to simulation noise. Marginal effects were:

e Age: -0.0064 (p=0.002).

e Vascular proximity: +0.0848 (p=0.022).

e Interaction: -0.0002 (p=0.760). Other features showed
marginal effects <1.2%.

Age | Vascular | Vascular | Vascular | Vascular | Vascular
proximity | proximity | proximity | proximity | proximity
1 mm 2 mm 3 mm 4 mm 5 mm
20 ]0.9415 0.9748 0.9893 0.9955 0.9981
27 10.9089 0.9594 0.9824 0.9925 0.9968
33 | 0.8608 0.9351 0.9711 0.9874 0.9945
40 10.7931 0.8979 0.9528 0.9789 0.9907
47 10.7038 0.8431 0.9239 0.9649 0.9841
53 1 0.5956 0.7664 0.8796 0.9421 0.9731
60 ]0.4773 0.6670 0.8146 0.9060 0.9548
67 03614 0.5501 0.7254 0.8509 0.9250
73 | 0.2597 0.4274 0.6137 0.7717 0.8779
80 |[0.1787 0.3131 0.4886 0.6669 0.8075

Table 1: Partial dependence table for Age X Vascular Proximity
interaction. Predicted probability of BCI implantation success (no major
complications and signal quality >85%) as a function of patient age
(years) and vascular proximity (distance from electrode placement to
nearest blood vessel in mm). Values were computed holding all other
model features at their mean values in the simulated dataset. Note that
the interaction term was not statistically significant (p=0.760), so patterns
are exploratory.

Feature Absolute t-Value
Electrode density 12.93
Disorder severity 4.20
Age 2.99
Vascular proximity 2.26
BCI type (Sub-cortical) 1.21
Constant 0.90
BCI type (Endovascular) 0.55
BMI 0.50
Anesthesia type (TIVA) 0.44
Age x Vascular 0.31
Anesthesia type (Volatile) 0.28

Table 2: Relative influence of predictors in the logistic regression model,
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approximated by absolute t-values (higher values indicate stronger
statistical evidence of effect on BCI success probability).

Partial dependence analysis for age and vascular proximity
(holding others at means) is summarized in the table 1. Note that
due to the non-significant interaction, these patterns should be
viewed as exploratory.

Electrode density exerted the strongest influence, followed by
disorder severity, age, and vascular proximity (table 2).

Discussion

The findings from this simulation study, grounded in a
synthesis of clinical literature, provide a structured framework
for understanding how patient-specific factors and procedural
choices influence brain-computer interface (BCI) implantation
outcomes. While the model relies on synthetic data, its parameter
distributions and effect directions were informed by real-world
evidence from BCl trials,® deep brain stimulation (DBS) studies,"
and anesthetic neurophysiology.'* The results highlight electrode
density as the dominant predictor of success, followed by disorder
severity, age, and vascular proximity all statistically significant
main effects. These align with clinical priorities: higher-channel
systems (e.g., 128-256 electrodes) improve signal fidelity and
decoding accuracy in motor BClIs,"* while severe neurological
impairment increases intraoperative instability and postoperative
adaptation challenges.'

The non-significant role of anesthesia type in the model warrants
careful interpretation. Although total intravenous anesthesia
(TIVA) showed a modest positive coefficient (+0.1273), it did
not reach statistical significance (p=0.657). This may reflect
insufficient power in the simulated dataset or, more plausibly,
the context-specific nature of anesthetic effects. In real procedures,
TIVA with propofol/remifentanil is often chosen not for direct
impact on success probability but to preserve high-frequency
neural oscillations critical for BCI calibration.® ' Volatile agents,
by contrast, suppress thalamic and cortical gamma activity,® which
could degrade signal quality in subcortical targeting particularly in
Parkinson’s disease. The lack of significance in this model likely
stems from the absence of an explicit anesthesia x disorder severity
interaction term, despite its inclusion in the data-generating
process. Future models should test this interaction directly, as
TIVA may confer disproportionate benefits in high-severity cases
(e.g., ALSFRS-R < 20), where autonomic volatility and respiratory
fragility are pronounced.’

The age x vascular proximity interaction, though non-significant
(p=0.760), revealed exploratory patterns consistent with clinical
intuition. At age 80, predicted success dropped from 81% at 5 mm
vessel distance to 18% at 1 mm a 63 percentage-point decline. This
reflects the compounded risk of hemorrhage in elderly patients
with fragile vasculature.'® While statistical noise precluded formal
inference, the partial dependence structure supports preoperative
neuroimaging optimization, such as using high-resolution vessel-
encoded arterial spin labeling (ASL) or intraoperative robotics
to maximize electrode-vessel separation.'” This is particularly
relevant for cortical surface arrays, where vascular mapping can
guide grid placement.

BCI modality also showed non-significant effects, but trends
suggest differential risk profiles. Subcortical implants trended
negative (-0.3553, p=0.225), possibly due to deeper trajectory risks
(e.g., capsular infarction), while endovascular approaches (e.g.,
Stentrode) had a smaller penalty (-0.1611, p=0.582). This may
reflect reduced parenchymal disruption in stent-based systems,*

though long-term biocompatibility and signal stability remain
under investigation. Higher electrode density appeared to mitigate
modality-specific risks, hinting at an unmodeled BCI type x
density interaction ripe for future exploration.

The pseudo-importance rankings reinforce a hierarchical view
of modifiable versus non-modifiable risks. Surgeons can directly
influence electrode density and vascular precision, whereas age and
disorder severity are fixed. This underscores the value of precision
neurosurgery integrating robotic stereotaxy, intraoperative MRI,
and Al-driven trajectory planning to shift patients toward higher-
success regions of the outcome space.

From a neurophysiological perspective, anesthetic choice
modulates the signal-to-noise ratio (SNR) of neural recordings.
Dexmedetomidine preserves alpha coherence in thalamocortical
loops,” facilitating MER in DBS and potentially improving target
confirmation in BCI. Propofol, while suppressing awareness, can
enhance local field potential (LFP) amplitude at low doses,’ aiding
epileptiform focus mapping. These mechanisms were not explicitly
encoded in the simulation but represent latent mediators that real-
data models could capture via multilevel or mediation analysis.

Limitations beyond data syntheticity include the binary outcome
definition. Success was defined as >85% signal quality and no
major complications, but real BCI efficacy depends on longitudinal
performance (e.g., bits-per-minute in communication, accuracy in
cursor control). The 85% threshold, while reasonable, is arbitrary;
sensitivity analyses across thresholds (70-95%) would strengthen
robustness. Additionally, the model omitted pharmacogenomics
(e.g., CYP2B6 variants affecting propofol metabolism),
comorbidities (e.g., diabetes increasing infection risk), and surgeon
experience, all known confounders in neurosurgical outcomes.'®
Intraoperative modeling during neurosurgey has already shown
its impact for intraoperative co-oximetry, evoked potentials and
electroencephalography.'

Translational implications are threefold:

1. Risk stratification: Use preoperative models integrating
age, neuroimaging, and disorder severity to identify high-
risk subgroups (e.g., elderly patients with <2 mm vascular
clearance) for enhanced monitoring or alternative BCI
modalities.

2. Anesthetic tailoring: Favor TIVA or dexmedetomidine in
signal-sensitive procedures (e.g., motor decoding in ALS,
MER in Parkinson’s), reserving volatiles for short, seizure-
prone cases where depth is prioritized over fidelity.

3. Technology integration: Invest in high-density, vascular-
aware electrode systems and intraoperative feedback loops
to dynamically adjust placement.

Future directions include:

*  Validation using multicenter BCI registries (e.g., Neuralink,
Synchron, or Paradromics trial data).

*  Explicit modeling of interactions (anesthesia x severity,
density X modality) using flexible frameworks like generalized
additive models (GAMSs) or gradient boosting.

e Incorporation of SHAP (SHapley Additive exPlanations)
values for interpretable, non-linear feature contributions.

* Longitudinal extensions linking implantation success to
functional outcomes (e.g., communication rate at 6 months).

In conclusion, this work demonstrates that while anesthesia
type may not dominate BCI success in isolation, its interaction
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with patient and procedural factors is clinically meaningful.
By combining literature-driven insights with interaction-aware
modeling, we lay a foundation for personalized neurotechnology
protocols that optimize both safety and signal integrity.

Limitations

This analysis relies on synthetic data, which may not fully
capture real-world variability or noise. Non-significant p-values
for interactions and anesthesia types indicate the need for larger,
empirical datasets. The arbitrary success threshold (>85%
signal quality) and simplified simulation assumptions limit
generalizability. Validation against real BCI trial data® is essential.
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