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Abstract

While various parametrizations of the Hubble parameter have been proposed to model the universe’s expansion, their viability within 
higher-dimensional modifi ed gravity remains largely untested. This study rigorously investigates the cosmological dynamics of fi ve 
distinct Hubble models (hyperbolic tangent, logarithmic, power-law, exponential decay, and emergent) within a Kaluza-Klein f(R,T)   
gravity framework. Crucially, beyond standard kinematic evolution, we subject these models to a comprehensive stability analysis 
using the squared speed of sound and energy condition constraints. We demonstrate that while most parametrizations can successfully 
mimic late-time cosmic acceleration, only the Logamediate Model (Model III) maintains perturbative stability throughout the cosmic 
history. This work establishes a critical selection criterion for modifi ed gravity reconstructions, fi ltering out observationally consistent 
but theoretically unstable dark energy candidates.
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1. Introduction

The accelerated expansion of the universe, as evidenced by observations of Type Ia supernovae, cosmic microwave background (CMB) 
anisotropies, and baryon acoustic oscillations (BAO), has posed signifi cant challenges to the standard cosmological model. While 
the ΛCDM model, incorporating a cosmological constant (Λ) and cold dark matter (CDM), has been successful in explaining a wide 
range of cosmological observations, it faces theoretical issues such as the fi ne tuning and coincidence problems. These challenges have 
motivated the exploration of alternative theories of gravity that can account for cosmic acceleration without invoking dark energy. 
One such alternative is the f(R,T) gravity theory, proposed by Harko et al.,1 which extends the standard f(R) gravity by including a 
dependence on the trace T of the energy-momentum tensor. This additional dependence allows for a more general coupling between 
matter and geometry, leading to modifi ed fi eld equations that can potentially explain the accelerated expansion of the universe through 
purely geometrical means. Subsequent studies have explored various aspects of f(R,T) gravity, including cosmological solutions,2 
thermodynamics,3 and energy conditions.4

In parallel, higher-dimensional theories, such as the Kaluza-Klein (KK) theory, have been explored to unify gravity with other 
fundamental interactions. The KK framework introduces extra spatial dimensions, compactifi ed to scales beyond current experimental 
detection, which can infl uence the dynamics of the four-dimensional universe. Incorporating KK geometry into cosmological 
models provides a richer structure to study the evolution of the universe and the eff ects of extra dimensions on observable quantities. 
Notable works in this area include the application of KK theory to cosmology,5 the study of bulk metrics,6 and the exploration of 
Lovelock-Cartan theory in higher dimensions.7 Parametrizing the Hubble parameter H(t) with specifi c functional forms has been a 
fruitful approach in cosmology, allowing for the reconstruction of the expansion history of the universe and the analysis of diff erent 
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evolutionary scenarios. Various parametrizations, such as power-law, exponential, and hyperbolic functions, have been employed 
to model different phases of cosmic evolution, including inflation, deceleration, and late-time acceleration.8-10 Recent studies have 
proposed novel parametrization approaches to better fit observational data and explore the dynamics of dark energy.11,12

In this study, we investigate five different parametrizations of the Hubble parameter within the framework of f(R,T) gravity, considering 
a Kaluza-Klein-type Friedmann-Robertson-Walker (FRW) universe. We analyse the cosmological implications of each model, focusing 
on the evolution of key parameters such as the scale factor, deceleration parameter, energy density, pressure, and equation of state. 
Additionally, we examine the stability of the models and the validity of energy conditions, considering different spatial curvatures 
k=0 , ±1. Our aim is to provide a comprehensive analysis of how different Hubble parameter parametrizations affect the dynamics 
of the universe in the context of f(R,T) gravity with KK geometry. By comparing the results across different models and curvature 
scenarios, we seek to identify which models are physically viable. Crucially, beyond just matching the expansion history, we will 
test their theoretical consistency by performing a rigorous stability analysis and examining the standard energy conditions.

This paper is organized as follows: Section 2 details the theoretical framework, introducing the f(R,T) gravity field equations and the 
Kaluza-Klein FRW metric. Section 3 introduces the five distinct Hubble parameter models. For each model, we derive and analyse 
the key cosmological parameters, including the scale factor, deceleration parameter, energy density, pressure, and equation of state. 
Section 4 presents a comparative analysis of the kinematic results from all five models. Section 5 is dedicated to a rigorous stability 
analysis of each model by examining the squared speed of sound. Section 6 assesses the physical viability of the models by testing 
them against the standard energy conditions. Section 7 summarizes our findings and conclusions, highlighting the most physically 
consistent models.

2. Overview of f (R,T)  Gravity, Metric and Field equations

For the f(R,T) modified theory of gravity formulated by,1 the action for the modified theories of gravity takes the following form
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to a rigorous stability analysis of each model by examining the squared speed of sound. Section 6 assesses the physical viability 

of the models by testing them against the standard energy conditions. Section 7 summarizes our findings and conclusions, 

highlighting the most physically consistent models.  

 
2. Overview of 𝒇𝒇(𝑹𝑹, 𝑻𝑻) Gravity, Metric and Field equations 

 
For the 𝑓𝑓(𝑅𝑅, 𝑇𝑇) modified theory of gravity formulated by [Harko et al. 2011], the action for the modified theories of gravity takes 

the following form 

𝑆𝑆 = 1
16𝜋𝜋 ∫ 𝑓𝑓(𝑅𝑅, 𝑇𝑇) √−𝑔𝑔 𝑑𝑑4𝑥𝑥 + ∫ 𝐿𝐿𝑚𝑚√−𝑔𝑔 𝑑𝑑4𝑥𝑥 ,                                                                                                                                             (1)  

where 𝑓𝑓(𝑅𝑅, 𝑇𝑇) is an arbitrary function of the Ricci scalar, 𝑅𝑅  and of the trace 𝑇𝑇 of the stress-energy tensor of the matter 𝑇𝑇𝜇𝜇𝜇𝜇.  𝐿𝐿𝑚𝑚 is 

the matter Lagrangian density.  

 

In the literature given by [Harko et al. 2011], by varying the action (1) with respect to metric tensor 𝑔𝑔𝜇𝜇𝜇𝜇 for the function 𝑓𝑓(𝑅𝑅, 𝑇𝑇) 

is given by 𝑓𝑓(𝑅𝑅, 𝑇𝑇) = 𝑅𝑅 + 2𝑓𝑓(𝑇𝑇), where 𝑓𝑓(𝑇𝑇) is an arbitrary function of the trace of the stress-energy tensor of matter                                

𝑇𝑇𝜇𝜇𝜇𝜇 = ( 𝑝𝑝 + 𝜌𝜌)𝑢𝑢𝜇𝜇𝑢𝑢𝜈𝜈 − 𝑝𝑝𝑔𝑔𝜇𝜇𝜇𝜇  , where 𝜌𝜌 and 𝑝𝑝 being the density and pressure, respectively and 𝑢𝑢𝜇𝜇 is the four velocity satisfies 

the conditions 𝑢𝑢𝜇𝜇𝑢𝑢𝜇𝜇 = 1 and 𝑢𝑢𝜇𝜇∇𝜈𝜈𝑢𝑢𝜇𝜇 = 0, required gravitational field equations are given by   

𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2 𝑅𝑅 𝑔𝑔𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝑇𝑇𝜇𝜇𝜇𝜇 + 2 𝑓𝑓′(𝑇𝑇)𝑇𝑇𝜇𝜇𝜇𝜇 + [2𝑝𝑝 𝑓𝑓′(𝑇𝑇) + 𝑓𝑓(𝑇𝑇)]𝑔𝑔𝜇𝜇𝜇𝜇 .                                                                                                                     (2)  

 

We consider a five-dimensional Kaluza-Klein space-time [Khadekar ,2008, Ozel C,2010] where the extra spatial dimension is 

compactified. 

𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − 𝑎𝑎2 { 𝑑𝑑𝑟𝑟2
1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2},                                                                                                   (3)  

where a(t) is the scale factor of the universe, k= -1, 0, +1 is the curvature parameter for open, flat, closed models respectively.  
 

Following the standard dimensional reduction procedure [Wesson, 1999], we assume that the physical quantities depend only on 

the cosmic time 𝑡𝑡 and not on the extra coordinate. The energy-momentum tensor 𝑇𝑇𝜇𝜇𝜇𝜇  represents the effective matter distribution 

on the four-dimensional hypersurface as, 

𝑇𝑇𝜇𝜇𝜇𝜇 = ( 𝑝𝑝 + 𝜌𝜌)𝑢𝑢𝜇𝜇𝑢𝑢𝜈𝜈 − 𝑝𝑝𝑔𝑔𝜇𝜇𝜇𝜇,                                                                                                                                                                     (4) 

where 𝑢𝑢𝜇𝜇 is the five-velocity vector of the fluid which has components (1,0,0,0,0) satisfies 𝑔𝑔𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖 𝑢𝑢𝑗𝑗 = −1.  
 

Thus, the quantities, 𝜌𝜌(𝑡𝑡) and 𝑝𝑝(𝑡𝑡) derived in this study correspond to the effective energy density and pressure observed in the 

4D universe, incorporating the geometric contributions from the extra dimension and the 𝑓𝑓(𝑅𝑅, 𝑇𝑇) coupling. 
 

The field equations (2) with the choice of 𝑓𝑓(𝑇𝑇) = 𝜆𝜆𝜆𝜆 , 𝜆𝜆 is constant and using equation (4) for the metric (3) be written as,  

𝜌𝜌𝜌𝜌 − 𝑝𝑝(8𝜋𝜋 + 4𝜆𝜆) = 3𝐻̇𝐻 + 6𝐻𝐻2 + 3𝑘𝑘
𝑎𝑎2                                                                                                                                           (5) 

𝜌𝜌(8𝜋𝜋 + 3𝜆𝜆) − 2𝑝𝑝𝑝𝑝 = 6𝐻𝐻2 + 6𝑘𝑘
𝑎𝑎2 ,                                                                                                                                                 (6) 

where overhead dot denotes differentiation with respect to 𝑡𝑡. 
 

where a(t) is the scale factor of the universe, k= -1, 0, +1 is the curvature parameter for open, flat, closed models respectively.

Following the standard dimensional reduction procedure, we assume that the physical quantities depend only on the cosmic time t and 
not on the extra coordinate. The energy-momentum tensor Tμν represents the effective matter distribution on the four-dimensional 
hypersurface as,

 

 
 

each model, focusing on the evolution of key parameters such as the scale factor, deceleration parameter, energy density, pressure, 

and equation of state. Additionally, we examine the stability of the models and the validity of energy conditions, considering 

different spatial curvatures 𝑘𝑘 = 0 , ±1 . Our aim is to provide a comprehensive analysis of how different Hubble parameter 

parametrizations affect the dynamics of the universe in the context of 𝑓𝑓(𝑅𝑅, 𝑇𝑇) gravity with KK geometry. By comparing the 

results across different models and curvature scenarios, we seek to identify which models are physically viable. Crucially, beyond 

just matching the expansion history, we will test their theoretical consistency by performing a rigorous stability analysis and 

examining the standard energy conditions. 

This paper is organized as follows: Section 2 details the theoretical framework, introducing the 𝑓𝑓(𝑅𝑅, 𝑇𝑇) gravity field equations 

and the Kaluza-Klein FRW metric. Section 3 introduces the five distinct Hubble parameter models. For each model, we derive 

and analyse the key cosmological parameters, including the scale factor, deceleration parameter, energy density, pressure, and 

equation of state. Section 4 presents a comparative analysis of the kinematic results from all five models. Section 5 is dedicated 

to a rigorous stability analysis of each model by examining the squared speed of sound. Section 6 assesses the physical viability 

of the models by testing them against the standard energy conditions. Section 7 summarizes our findings and conclusions, 

highlighting the most physically consistent models.  

 
2. Overview of 𝒇𝒇(𝑹𝑹, 𝑻𝑻) Gravity, Metric and Field equations 

 
For the 𝑓𝑓(𝑅𝑅, 𝑇𝑇) modified theory of gravity formulated by [Harko et al. 2011], the action for the modified theories of gravity takes 

the following form 

𝑆𝑆 = 1
16𝜋𝜋 ∫ 𝑓𝑓(𝑅𝑅, 𝑇𝑇) √−𝑔𝑔 𝑑𝑑4𝑥𝑥 + ∫ 𝐿𝐿𝑚𝑚√−𝑔𝑔 𝑑𝑑4𝑥𝑥 ,                                                                                                                                             (1)  

where 𝑓𝑓(𝑅𝑅, 𝑇𝑇) is an arbitrary function of the Ricci scalar, 𝑅𝑅  and of the trace 𝑇𝑇 of the stress-energy tensor of the matter 𝑇𝑇𝜇𝜇𝜇𝜇.  𝐿𝐿𝑚𝑚 is 

the matter Lagrangian density.  

 

In the literature given by [Harko et al. 2011], by varying the action (1) with respect to metric tensor 𝑔𝑔𝜇𝜇𝜇𝜇 for the function 𝑓𝑓(𝑅𝑅, 𝑇𝑇) 

is given by 𝑓𝑓(𝑅𝑅, 𝑇𝑇) = 𝑅𝑅 + 2𝑓𝑓(𝑇𝑇), where 𝑓𝑓(𝑇𝑇) is an arbitrary function of the trace of the stress-energy tensor of matter                                

𝑇𝑇𝜇𝜇𝜇𝜇 = ( 𝑝𝑝 + 𝜌𝜌)𝑢𝑢𝜇𝜇𝑢𝑢𝜈𝜈 − 𝑝𝑝𝑔𝑔𝜇𝜇𝜇𝜇  , where 𝜌𝜌 and 𝑝𝑝 being the density and pressure, respectively and 𝑢𝑢𝜇𝜇 is the four velocity satisfies 

the conditions 𝑢𝑢𝜇𝜇𝑢𝑢𝜇𝜇 = 1 and 𝑢𝑢𝜇𝜇∇𝜈𝜈𝑢𝑢𝜇𝜇 = 0, required gravitational field equations are given by   

𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2 𝑅𝑅 𝑔𝑔𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝑇𝑇𝜇𝜇𝜇𝜇 + 2 𝑓𝑓′(𝑇𝑇)𝑇𝑇𝜇𝜇𝜇𝜇 + [2𝑝𝑝 𝑓𝑓′(𝑇𝑇) + 𝑓𝑓(𝑇𝑇)]𝑔𝑔𝜇𝜇𝜇𝜇 .                                                                                                                     (2)  

 

We consider a five-dimensional Kaluza-Klein space-time [Khadekar ,2008, Ozel C,2010] where the extra spatial dimension is 

compactified. 

𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − 𝑎𝑎2 { 𝑑𝑑𝑟𝑟2
1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2},                                                                                                   (3)  

where a(t) is the scale factor of the universe, k= -1, 0, +1 is the curvature parameter for open, flat, closed models respectively.  
 

Following the standard dimensional reduction procedure [Wesson, 1999], we assume that the physical quantities depend only on 

the cosmic time 𝑡𝑡 and not on the extra coordinate. The energy-momentum tensor 𝑇𝑇𝜇𝜇𝜇𝜇  represents the effective matter distribution 

on the four-dimensional hypersurface as, 

𝑇𝑇𝜇𝜇𝜇𝜇 = ( 𝑝𝑝 + 𝜌𝜌)𝑢𝑢𝜇𝜇𝑢𝑢𝜈𝜈 − 𝑝𝑝𝑔𝑔𝜇𝜇𝜇𝜇,                                                                                                                                                                     (4) 

where 𝑢𝑢𝜇𝜇 is the five-velocity vector of the fluid which has components (1,0,0,0,0) satisfies 𝑔𝑔𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖 𝑢𝑢𝑗𝑗 = −1.  
 

Thus, the quantities, 𝜌𝜌(𝑡𝑡) and 𝑝𝑝(𝑡𝑡) derived in this study correspond to the effective energy density and pressure observed in the 

4D universe, incorporating the geometric contributions from the extra dimension and the 𝑓𝑓(𝑅𝑅, 𝑇𝑇) coupling. 
 

The field equations (2) with the choice of 𝑓𝑓(𝑇𝑇) = 𝜆𝜆𝜆𝜆 , 𝜆𝜆 is constant and using equation (4) for the metric (3) be written as,  

𝜌𝜌𝜌𝜌 − 𝑝𝑝(8𝜋𝜋 + 4𝜆𝜆) = 3𝐻̇𝐻 + 6𝐻𝐻2 + 3𝑘𝑘
𝑎𝑎2                                                                                                                                           (5) 

𝜌𝜌(8𝜋𝜋 + 3𝜆𝜆) − 2𝑝𝑝𝑝𝑝 = 6𝐻𝐻2 + 6𝑘𝑘
𝑎𝑎2 ,                                                                                                                                                 (6) 

where overhead dot denotes differentiation with respect to 𝑡𝑡. 
 

where uμ is the five-velocity vector of the fluid which has components (1,0,0,0,0) satisfies 

 
 

each model, focusing on the evolution of key parameters such as the scale factor, deceleration parameter, energy density, pressure, 

and equation of state. Additionally, we examine the stability of the models and the validity of energy conditions, considering 

different spatial curvatures 𝑘𝑘 = 0 , ±1 . Our aim is to provide a comprehensive analysis of how different Hubble parameter 

parametrizations affect the dynamics of the universe in the context of 𝑓𝑓(𝑅𝑅, 𝑇𝑇) gravity with KK geometry. By comparing the 

results across different models and curvature scenarios, we seek to identify which models are physically viable. Crucially, beyond 

just matching the expansion history, we will test their theoretical consistency by performing a rigorous stability analysis and 

examining the standard energy conditions. 

This paper is organized as follows: Section 2 details the theoretical framework, introducing the 𝑓𝑓(𝑅𝑅, 𝑇𝑇) gravity field equations 

and the Kaluza-Klein FRW metric. Section 3 introduces the five distinct Hubble parameter models. For each model, we derive 

and analyse the key cosmological parameters, including the scale factor, deceleration parameter, energy density, pressure, and 

equation of state. Section 4 presents a comparative analysis of the kinematic results from all five models. Section 5 is dedicated 

to a rigorous stability analysis of each model by examining the squared speed of sound. Section 6 assesses the physical viability 

of the models by testing them against the standard energy conditions. Section 7 summarizes our findings and conclusions, 

highlighting the most physically consistent models.  

 
2. Overview of 𝒇𝒇(𝑹𝑹, 𝑻𝑻) Gravity, Metric and Field equations 

 
For the 𝑓𝑓(𝑅𝑅, 𝑇𝑇) modified theory of gravity formulated by [Harko et al. 2011], the action for the modified theories of gravity takes 

the following form 

𝑆𝑆 = 1
16𝜋𝜋 ∫ 𝑓𝑓(𝑅𝑅, 𝑇𝑇) √−𝑔𝑔 𝑑𝑑4𝑥𝑥 + ∫ 𝐿𝐿𝑚𝑚√−𝑔𝑔 𝑑𝑑4𝑥𝑥 ,                                                                                                                                             (1)  

where 𝑓𝑓(𝑅𝑅, 𝑇𝑇) is an arbitrary function of the Ricci scalar, 𝑅𝑅  and of the trace 𝑇𝑇 of the stress-energy tensor of the matter 𝑇𝑇𝜇𝜇𝜇𝜇.  𝐿𝐿𝑚𝑚 is 

the matter Lagrangian density.  

 

In the literature given by [Harko et al. 2011], by varying the action (1) with respect to metric tensor 𝑔𝑔𝜇𝜇𝜇𝜇 for the function 𝑓𝑓(𝑅𝑅, 𝑇𝑇) 

is given by 𝑓𝑓(𝑅𝑅, 𝑇𝑇) = 𝑅𝑅 + 2𝑓𝑓(𝑇𝑇), where 𝑓𝑓(𝑇𝑇) is an arbitrary function of the trace of the stress-energy tensor of matter                                

𝑇𝑇𝜇𝜇𝜇𝜇 = ( 𝑝𝑝 + 𝜌𝜌)𝑢𝑢𝜇𝜇𝑢𝑢𝜈𝜈 − 𝑝𝑝𝑔𝑔𝜇𝜇𝜇𝜇  , where 𝜌𝜌 and 𝑝𝑝 being the density and pressure, respectively and 𝑢𝑢𝜇𝜇 is the four velocity satisfies 

the conditions 𝑢𝑢𝜇𝜇𝑢𝑢𝜇𝜇 = 1 and 𝑢𝑢𝜇𝜇∇𝜈𝜈𝑢𝑢𝜇𝜇 = 0, required gravitational field equations are given by   

𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2 𝑅𝑅 𝑔𝑔𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝑇𝑇𝜇𝜇𝜇𝜇 + 2 𝑓𝑓′(𝑇𝑇)𝑇𝑇𝜇𝜇𝜇𝜇 + [2𝑝𝑝 𝑓𝑓′(𝑇𝑇) + 𝑓𝑓(𝑇𝑇)]𝑔𝑔𝜇𝜇𝜇𝜇 .                                                                                                                     (2)  

 

We consider a five-dimensional Kaluza-Klein space-time [Khadekar ,2008, Ozel C,2010] where the extra spatial dimension is 

compactified. 

𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − 𝑎𝑎2 { 𝑑𝑑𝑟𝑟2
1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2},                                                                                                   (3)  

where a(t) is the scale factor of the universe, k= -1, 0, +1 is the curvature parameter for open, flat, closed models respectively.  
 

Following the standard dimensional reduction procedure [Wesson, 1999], we assume that the physical quantities depend only on 

the cosmic time 𝑡𝑡 and not on the extra coordinate. The energy-momentum tensor 𝑇𝑇𝜇𝜇𝜇𝜇  represents the effective matter distribution 

on the four-dimensional hypersurface as, 

𝑇𝑇𝜇𝜇𝜇𝜇 = ( 𝑝𝑝 + 𝜌𝜌)𝑢𝑢𝜇𝜇𝑢𝑢𝜈𝜈 − 𝑝𝑝𝑔𝑔𝜇𝜇𝜇𝜇,                                                                                                                                                                     (4) 

where 𝑢𝑢𝜇𝜇 is the five-velocity vector of the fluid which has components (1,0,0,0,0) satisfies 𝑔𝑔𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖 𝑢𝑢𝑗𝑗 = −1.  
 

Thus, the quantities, 𝜌𝜌(𝑡𝑡) and 𝑝𝑝(𝑡𝑡) derived in this study correspond to the effective energy density and pressure observed in the 

4D universe, incorporating the geometric contributions from the extra dimension and the 𝑓𝑓(𝑅𝑅, 𝑇𝑇) coupling. 
 

The field equations (2) with the choice of 𝑓𝑓(𝑇𝑇) = 𝜆𝜆𝜆𝜆 , 𝜆𝜆 is constant and using equation (4) for the metric (3) be written as,  

𝜌𝜌𝜌𝜌 − 𝑝𝑝(8𝜋𝜋 + 4𝜆𝜆) = 3𝐻̇𝐻 + 6𝐻𝐻2 + 3𝑘𝑘
𝑎𝑎2                                                                                                                                           (5) 

𝜌𝜌(8𝜋𝜋 + 3𝜆𝜆) − 2𝑝𝑝𝑝𝑝 = 6𝐻𝐻2 + 6𝑘𝑘
𝑎𝑎2 ,                                                                                                                                                 (6) 

where overhead dot denotes differentiation with respect to 𝑡𝑡. 
 

Thus, the quantities, ρ(t) and p(t) derived in this study correspond to the effective energy density and pressure observed in the 4D 
universe, incorporating the geometric contributions from the extra dimension and the f(R,T) coupling.
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each model, focusing on the evolution of key parameters such as the scale factor, deceleration parameter, energy density, pressure, 

and equation of state. Additionally, we examine the stability of the models and the validity of energy conditions, considering 

different spatial curvatures 𝑘𝑘 = 0 , ±1 . Our aim is to provide a comprehensive analysis of how different Hubble parameter 

parametrizations affect the dynamics of the universe in the context of 𝑓𝑓(𝑅𝑅, 𝑇𝑇) gravity with KK geometry. By comparing the 

results across different models and curvature scenarios, we seek to identify which models are physically viable. Crucially, beyond 
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Thus, the quantities, 𝜌𝜌(𝑡𝑡) and 𝑝𝑝(𝑡𝑡) derived in this study correspond to the effective energy density and pressure observed in the 

4D universe, incorporating the geometric contributions from the extra dimension and the 𝑓𝑓(𝑅𝑅, 𝑇𝑇) coupling. 
 

The field equations (2) with the choice of 𝑓𝑓(𝑇𝑇) = 𝜆𝜆𝜆𝜆 , 𝜆𝜆 is constant and using equation (4) for the metric (3) be written as,  
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where overhead dot denotes differentiation with respect to t.

To solve the system of field equations (5) and (6), we adopt a reconstruction approach. In this framework, the cosmological dynamics 
are driven by the phenomenological choice of the Hubble parameter H(t). Since the metric evolution is fully determined by H(t), 
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equations (5) and (6) constitute a system of two equations with two unknowns, ρ(t) and p(t). Unlike standard forward-modelling 
where an equation of state p = ωρ is assumed a priori, here we determine the necessary fluid properties required to sustain the chosen 
expansion history. Consequently, the effective equation of state parameter is derived dynamically as:

 

 
 

To solve the system of field equations (5) and (6), we adopt a reconstruction approach. In this framework, the cosmological 

dynamics are driven by the phenomenological choice of the Hubble parameter 𝐻𝐻(𝑡𝑡). Since the metric evolution is fully 

determined by 𝐻𝐻(𝑡𝑡), equations (5) and (6) constitute a system of two equations with two unknowns, 𝜌𝜌(𝑡𝑡) and 𝑝𝑝(𝑡𝑡). Unlike standard 

forward-modelling where an equation of state 𝑝𝑝 = 𝜔𝜔𝜔𝜔  is assumed a priori, here we determine the necessary fluid properties 

required to sustain the chosen expansion history. Consequently, the effective equation of state parameter is derived dynamically 

as: 

𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)  =  𝑝𝑝(𝑡𝑡)/𝜌𝜌(𝑡𝑡)                                                                                                                                                                    (7) 

This allows us to analyse how the fluid behaviour evolves from early-time deceleration to late-time acceleration without imposing 

a rigid barotropic constraint. 
 

 

From equations (5), (6) and (7), we write, energy density, pressure and equation of state for KK FRW type universe in 𝑓𝑓(𝑅𝑅,𝑇𝑇) 

gravity are as follows: 

𝜌𝜌(𝑡𝑡) =  𝐴𝐴ℎ2−2𝜆𝜆ℎ1𝐴𝐴𝐴𝐴−2𝜆𝜆2                                                                                                                                                                             (8) 

𝑝𝑝(𝑡𝑡) =  𝜆𝜆ℎ2−𝐵𝐵ℎ1𝐴𝐴𝐴𝐴−2𝜆𝜆2                                                                                                                                                                              (9) 

𝜔𝜔(𝑡𝑡) =  𝜆𝜆ℎ2−𝐵𝐵ℎ1𝐴𝐴ℎ2−2𝜆𝜆ℎ1
                                                                                                                                                                         (10) 

where, ℎ1 = 3𝐻̇𝐻 + 6𝐻𝐻2 + 3𝑘𝑘
𝑎𝑎2 , ℎ2 = 6𝐻𝐻2 + 6𝑘𝑘

𝑎𝑎2, 𝐴𝐴 = (8𝜋𝜋 + 4𝜆𝜆) and B= (8𝜋𝜋 + 3𝜆𝜆). 
 

3. Role of Hubble Parameter in Cosmological Dynamics 
 

 

The Hubble parameter 𝐻𝐻(𝑡𝑡) = (𝑎̇𝑎 𝑎𝑎⁄ )  plays a central role in cosmology, defining the rate of expansion of the universe and linking 

the dynamics of spacetime to its energy content through the Friedmann equations. Its evolution governs whether the universe is 

undergoing acceleration or deceleration, as quantified by the deceleration parameter 𝑞𝑞(𝑡𝑡) = −1 −  𝐻̇𝐻 𝐻𝐻2⁄ . The specific form of 

𝐻𝐻(𝑡𝑡) dictates the behaviour of key cosmological variables such as the energy density 𝜌𝜌(𝑡𝑡),  pressure 𝑝𝑝(𝑡𝑡), the equation of state 

𝜔𝜔(𝑡𝑡), and the scale factor 𝑎𝑎(𝑡𝑡). Accurate modelling of 𝐻𝐻(𝑡𝑡) is essential for describing different phases of cosmic evolution, 

including inflation, matter radiation domination, and late-time acceleration. Since the Hubble parameter is also directly 

constrained by observations through redshift measurements and cosmic chronometers, it serves as a critical bridge between 

theory and observation for testing various cosmological and modified gravity models [Riess 1998, Planck 2020].  
 

For the graphical analysis presented in this study, the model parameters (such as 𝛼𝛼, 𝛾𝛾,𝛽𝛽, 𝛿𝛿,𝜓𝜓, 𝜉𝜉, 𝜇𝜇,𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆) have been chosen 

strategically to illustrate the distinct physical behaviours of each cosmological model. The specific values are selected not as a 

best fit to observational data, but to clearly demonstrate the qualitative nature of the solutions. This includes showcasing key 

cosmic features, such as a potential transition from a decelerated phase (𝑞𝑞 > 0) to an accelerated one (𝑞𝑞 < 0), and to examine 

the physical viability of key parameters within the 𝑓𝑓(𝑅𝑅,𝑇𝑇)  Kaluza-Klein framework. 
 

In our analysis, we have employed five different forms of the Hubble parameter to explore various realistic cosmic expansion 

scenarios: 

1. Emergent exponential model: 𝐻𝐻(𝑡𝑡) = [𝛾𝛾𝛾𝛾𝑒𝑒𝛾𝛾𝛾𝛾 (𝑒𝑒𝛾𝛾𝛾𝛾 + 𝜇𝜇)⁄ ]  , a smooth function ideal for 

unified evolution from early to late times, where 𝛾𝛾 acts as an exponential rate. [Nojiri 2006]. 

2. Intermediate generalized power-law model: 𝐻𝐻(𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑡𝑡𝜎𝜎−1, representing early 

accelerated expansion phases, where 𝜎𝜎 is a power-law index. 
3. Logamediate model: 𝐻𝐻(𝑡𝑡) = (𝛿𝛿𝛿𝛿 𝑙𝑙𝑙𝑙𝑙𝑙𝛽𝛽−1𝑡𝑡) 𝑡𝑡 ⁄  , 𝛿𝛿 > 0  and 𝛽𝛽 > 1.,which describes 

intermediate expansion behaviour, slower than de Sitter but faster than power-law, and is 

useful for modelling late-time acceleration [Barrow 2006]. 

4. Exponential decay model: 𝐻𝐻(𝑡𝑡) = 𝐻𝐻0 −
𝐻𝐻1
𝑒𝑒𝜉𝜉𝜉𝜉 , capturing late-time deviations from ΛCDM 

and useful for testing dark energy dynamics, where 𝜉𝜉 is an exponential decay rate. 

5. Emergent tanh expansion model: 𝐻𝐻(𝑡𝑡) = 𝜓𝜓 tanh ( 𝑡𝑡
𝑡𝑡0
), allowing for a smooth transition 

from deceleration to acceleration, where the constant value 𝜓𝜓 describes a late-time de Sitter 

exponential expansion 

                         
This allows us to analyse how the fluid behaviour evolves from early-time deceleration to late-time acceleration without imposing 
a rigid barotropic constraint.

From equations (5), (6) and (7), we write, energy density, pressure and equation of state for KK FRW type universe in f(R,T) gravity 
are as follows:
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and useful for testing dark energy dynamics, where 𝜉𝜉 is an exponential decay rate. 

5. Emergent tanh expansion model: 𝐻𝐻(𝑡𝑡) = 𝜓𝜓 tanh ( 𝑡𝑡
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), allowing for a smooth transition 

from deceleration to acceleration, where the constant value 𝜓𝜓 describes a late-time de Sitter 
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3. Role of Hubble Parameter in Cosmological Dynamics

The Hubble parameter H(t)=(ȧ⁄a) plays a central role in cosmology, defining the rate of expansion of the universe and linking 
the dynamics of spacetime to its energy content through the Friedmann equations. Its evolution governs whether the universe is 
undergoing acceleration or deceleration, as quantified by the deceleration parameter q(t)= -1- Ḣ/H2. The specific form of H(t) dictates 
the behaviour of key cosmological variables such as the energy density ρ(t), pressure p(t), the equation of state ω(t), and the scale 
factor a(t). Accurate modelling of H(t) is essential for describing different phases of cosmic evolution, including inflation, matter 
radiation domination, and late-time acceleration. Since the Hubble parameter is also directly constrained by observations through 
redshift measurements and cosmic chronometers, it serves as a critical bridge between theory and observation for testing various 
cosmological and modified gravity models.16,18

For the graphical analysis presented in this study, the model parameters (such as α, γ, β, δ, ψ, ξ, μ, n and λ) have been chosen 
strategically to illustrate the distinct physical behaviours of each cosmological model. The specific values are selected not as a best 
fit to observational data, but to clearly demonstrate the qualitative nature of the solutions. This includes showcasing key cosmic 
features, such as a potential transition from a decelerated phase (q > 0) to an accelerated one (q < 0), and to examine the physical 
viability of key parameters within the f(R,T) Kaluza-Klein framework.

1.	 Emergent exponential model: 

 
 

To solve the system of field equations (5) and (6), we adopt a reconstruction approach. In this framework, the cosmological 

dynamics are driven by the phenomenological choice of the Hubble parameter 𝐻𝐻(𝑡𝑡). Since the metric evolution is fully 

determined by 𝐻𝐻(𝑡𝑡), equations (5) and (6) constitute a system of two equations with two unknowns, 𝜌𝜌(𝑡𝑡) and 𝑝𝑝(𝑡𝑡). Unlike standard 

forward-modelling where an equation of state 𝑝𝑝 = 𝜔𝜔𝜔𝜔  is assumed a priori, here we determine the necessary fluid properties 

required to sustain the chosen expansion history. Consequently, the effective equation of state parameter is derived dynamically 

as: 

𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)  =  𝑝𝑝(𝑡𝑡)/𝜌𝜌(𝑡𝑡)                                                                                                                                                                    (7) 

This allows us to analyse how the fluid behaviour evolves from early-time deceleration to late-time acceleration without imposing 

a rigid barotropic constraint. 
 

 

From equations (5), (6) and (7), we write, energy density, pressure and equation of state for KK FRW type universe in 𝑓𝑓(𝑅𝑅,𝑇𝑇) 

gravity are as follows: 

𝜌𝜌(𝑡𝑡) =  𝐴𝐴ℎ2−2𝜆𝜆ℎ1𝐴𝐴𝐴𝐴−2𝜆𝜆2                                                                                                                                                                             (8) 

𝑝𝑝(𝑡𝑡) =  𝜆𝜆ℎ2−𝐵𝐵ℎ1𝐴𝐴𝐴𝐴−2𝜆𝜆2                                                                                                                                                                              (9) 

𝜔𝜔(𝑡𝑡) =  𝜆𝜆ℎ2−𝐵𝐵ℎ1𝐴𝐴ℎ2−2𝜆𝜆ℎ1
                                                                                                                                                                         (10) 

where, ℎ1 = 3𝐻̇𝐻 + 6𝐻𝐻2 + 3𝑘𝑘
𝑎𝑎2 , ℎ2 = 6𝐻𝐻2 + 6𝑘𝑘

𝑎𝑎2, 𝐴𝐴 = (8𝜋𝜋 + 4𝜆𝜆) and B= (8𝜋𝜋 + 3𝜆𝜆). 
 

3. Role of Hubble Parameter in Cosmological Dynamics 
 

 

The Hubble parameter 𝐻𝐻(𝑡𝑡) = (𝑎̇𝑎 𝑎𝑎⁄ )  plays a central role in cosmology, defining the rate of expansion of the universe and linking 

the dynamics of spacetime to its energy content through the Friedmann equations. Its evolution governs whether the universe is 

undergoing acceleration or deceleration, as quantified by the deceleration parameter 𝑞𝑞(𝑡𝑡) = −1 −  𝐻̇𝐻 𝐻𝐻2⁄ . The specific form of 

𝐻𝐻(𝑡𝑡) dictates the behaviour of key cosmological variables such as the energy density 𝜌𝜌(𝑡𝑡),  pressure 𝑝𝑝(𝑡𝑡), the equation of state 

𝜔𝜔(𝑡𝑡), and the scale factor 𝑎𝑎(𝑡𝑡). Accurate modelling of 𝐻𝐻(𝑡𝑡) is essential for describing different phases of cosmic evolution, 

including inflation, matter radiation domination, and late-time acceleration. Since the Hubble parameter is also directly 

constrained by observations through redshift measurements and cosmic chronometers, it serves as a critical bridge between 

theory and observation for testing various cosmological and modified gravity models [Riess 1998, Planck 2020].  
 

For the graphical analysis presented in this study, the model parameters (such as 𝛼𝛼, 𝛾𝛾,𝛽𝛽, 𝛿𝛿,𝜓𝜓, 𝜉𝜉, 𝜇𝜇,𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆) have been chosen 

strategically to illustrate the distinct physical behaviours of each cosmological model. The specific values are selected not as a 

best fit to observational data, but to clearly demonstrate the qualitative nature of the solutions. This includes showcasing key 

cosmic features, such as a potential transition from a decelerated phase (𝑞𝑞 > 0) to an accelerated one (𝑞𝑞 < 0), and to examine 

the physical viability of key parameters within the 𝑓𝑓(𝑅𝑅,𝑇𝑇)  Kaluza-Klein framework. 
 

In our analysis, we have employed five different forms of the Hubble parameter to explore various realistic cosmic expansion 

scenarios: 

1. Emergent exponential model: 𝐻𝐻(𝑡𝑡) = [𝛾𝛾𝛾𝛾𝑒𝑒𝛾𝛾𝛾𝛾 (𝑒𝑒𝛾𝛾𝛾𝛾 + 𝜇𝜇)⁄ ]  , a smooth function ideal for 

unified evolution from early to late times, where 𝛾𝛾 acts as an exponential rate. [Nojiri 2006]. 

2. Intermediate generalized power-law model: 𝐻𝐻(𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑡𝑡𝜎𝜎−1, representing early 

accelerated expansion phases, where 𝜎𝜎 is a power-law index. 
3. Logamediate model: 𝐻𝐻(𝑡𝑡) = (𝛿𝛿𝛿𝛿 𝑙𝑙𝑙𝑙𝑙𝑙𝛽𝛽−1𝑡𝑡) 𝑡𝑡 ⁄  , 𝛿𝛿 > 0  and 𝛽𝛽 > 1.,which describes 

intermediate expansion behaviour, slower than de Sitter but faster than power-law, and is 

useful for modelling late-time acceleration [Barrow 2006]. 

4. Exponential decay model: 𝐻𝐻(𝑡𝑡) = 𝐻𝐻0 −
𝐻𝐻1
𝑒𝑒𝜉𝜉𝜉𝜉 , capturing late-time deviations from ΛCDM 

and useful for testing dark energy dynamics, where 𝜉𝜉 is an exponential decay rate. 

5. Emergent tanh expansion model: 𝐻𝐻(𝑡𝑡) = 𝜓𝜓 tanh ( 𝑡𝑡
𝑡𝑡0
), allowing for a smooth transition 

from deceleration to acceleration, where the constant value 𝜓𝜓 describes a late-time de Sitter 

exponential expansion 

, a smooth function ideal for unified evolution from early to late times, 
where γ acts as an exponential rate.29 

2.	 Intermediate generalized power-law model: H(t)=ασt(σ-1), representing early accelerated expansion phases, where σ is a 
power-law index.

3.	 Logamediate model: H(t) = (δβ logβ-1t)/t, δ>0 and β>1.,which describes intermediate expansion behaviour, slower than de Sitter 
but faster than power-law, and is useful for modelling late-time acceleration.13

4.	 Exponential decay model: 

 
 

To solve the system of field equations (5) and (6), we adopt a reconstruction approach. In this framework, the cosmological 

dynamics are driven by the phenomenological choice of the Hubble parameter 𝐻𝐻(𝑡𝑡). Since the metric evolution is fully 

determined by 𝐻𝐻(𝑡𝑡), equations (5) and (6) constitute a system of two equations with two unknowns, 𝜌𝜌(𝑡𝑡) and 𝑝𝑝(𝑡𝑡). Unlike standard 

forward-modelling where an equation of state 𝑝𝑝 = 𝜔𝜔𝜔𝜔  is assumed a priori, here we determine the necessary fluid properties 

required to sustain the chosen expansion history. Consequently, the effective equation of state parameter is derived dynamically 

as: 

𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)  =  𝑝𝑝(𝑡𝑡)/𝜌𝜌(𝑡𝑡)                                                                                                                                                                    (7) 

This allows us to analyse how the fluid behaviour evolves from early-time deceleration to late-time acceleration without imposing 

a rigid barotropic constraint. 
 

 

From equations (5), (6) and (7), we write, energy density, pressure and equation of state for KK FRW type universe in 𝑓𝑓(𝑅𝑅,𝑇𝑇) 

gravity are as follows: 

𝜌𝜌(𝑡𝑡) =  𝐴𝐴ℎ2−2𝜆𝜆ℎ1𝐴𝐴𝐴𝐴−2𝜆𝜆2                                                                                                                                                                             (8) 

𝑝𝑝(𝑡𝑡) =  𝜆𝜆ℎ2−𝐵𝐵ℎ1𝐴𝐴𝐴𝐴−2𝜆𝜆2                                                                                                                                                                              (9) 

𝜔𝜔(𝑡𝑡) =  𝜆𝜆ℎ2−𝐵𝐵ℎ1𝐴𝐴ℎ2−2𝜆𝜆ℎ1
                                                                                                                                                                         (10) 

where, ℎ1 = 3𝐻̇𝐻 + 6𝐻𝐻2 + 3𝑘𝑘
𝑎𝑎2 , ℎ2 = 6𝐻𝐻2 + 6𝑘𝑘

𝑎𝑎2, 𝐴𝐴 = (8𝜋𝜋 + 4𝜆𝜆) and B= (8𝜋𝜋 + 3𝜆𝜆). 
 

3. Role of Hubble Parameter in Cosmological Dynamics 
 

 

The Hubble parameter 𝐻𝐻(𝑡𝑡) = (𝑎̇𝑎 𝑎𝑎⁄ )  plays a central role in cosmology, defining the rate of expansion of the universe and linking 

the dynamics of spacetime to its energy content through the Friedmann equations. Its evolution governs whether the universe is 

undergoing acceleration or deceleration, as quantified by the deceleration parameter 𝑞𝑞(𝑡𝑡) = −1 −  𝐻̇𝐻 𝐻𝐻2⁄ . The specific form of 

𝐻𝐻(𝑡𝑡) dictates the behaviour of key cosmological variables such as the energy density 𝜌𝜌(𝑡𝑡),  pressure 𝑝𝑝(𝑡𝑡), the equation of state 

𝜔𝜔(𝑡𝑡), and the scale factor 𝑎𝑎(𝑡𝑡). Accurate modelling of 𝐻𝐻(𝑡𝑡) is essential for describing different phases of cosmic evolution, 

including inflation, matter radiation domination, and late-time acceleration. Since the Hubble parameter is also directly 

constrained by observations through redshift measurements and cosmic chronometers, it serves as a critical bridge between 

theory and observation for testing various cosmological and modified gravity models [Riess 1998, Planck 2020].  
 

For the graphical analysis presented in this study, the model parameters (such as 𝛼𝛼, 𝛾𝛾,𝛽𝛽, 𝛿𝛿,𝜓𝜓, 𝜉𝜉, 𝜇𝜇,𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆) have been chosen 

strategically to illustrate the distinct physical behaviours of each cosmological model. The specific values are selected not as a 

best fit to observational data, but to clearly demonstrate the qualitative nature of the solutions. This includes showcasing key 

cosmic features, such as a potential transition from a decelerated phase (𝑞𝑞 > 0) to an accelerated one (𝑞𝑞 < 0), and to examine 

the physical viability of key parameters within the 𝑓𝑓(𝑅𝑅,𝑇𝑇)  Kaluza-Klein framework. 
 

In our analysis, we have employed five different forms of the Hubble parameter to explore various realistic cosmic expansion 

scenarios: 

1. Emergent exponential model: 𝐻𝐻(𝑡𝑡) = [𝛾𝛾𝛾𝛾𝑒𝑒𝛾𝛾𝛾𝛾 (𝑒𝑒𝛾𝛾𝛾𝛾 + 𝜇𝜇)⁄ ]  , a smooth function ideal for 

unified evolution from early to late times, where 𝛾𝛾 acts as an exponential rate. [Nojiri 2006]. 

2. Intermediate generalized power-law model: 𝐻𝐻(𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑡𝑡𝜎𝜎−1, representing early 

accelerated expansion phases, where 𝜎𝜎 is a power-law index. 
3. Logamediate model: 𝐻𝐻(𝑡𝑡) = (𝛿𝛿𝛿𝛿 𝑙𝑙𝑙𝑙𝑙𝑙𝛽𝛽−1𝑡𝑡) 𝑡𝑡 ⁄  , 𝛿𝛿 > 0  and 𝛽𝛽 > 1.,which describes 

intermediate expansion behaviour, slower than de Sitter but faster than power-law, and is 

useful for modelling late-time acceleration [Barrow 2006]. 

4. Exponential decay model: 𝐻𝐻(𝑡𝑡) = 𝐻𝐻0 −
𝐻𝐻1
𝑒𝑒𝜉𝜉𝜉𝜉 , capturing late-time deviations from ΛCDM 

and useful for testing dark energy dynamics, where 𝜉𝜉 is an exponential decay rate. 

5. Emergent tanh expansion model: 𝐻𝐻(𝑡𝑡) = 𝜓𝜓 tanh ( 𝑡𝑡
𝑡𝑡0
), allowing for a smooth transition 

from deceleration to acceleration, where the constant value 𝜓𝜓 describes a late-time de Sitter 

exponential expansion 

 capturing late-time deviations from ΛCDM and useful for testing dark energy dynamics, 
where ξ is an exponential decay rate.

5.	 Emergent tanh expansion model: 

 
 

To solve the system of field equations (5) and (6), we adopt a reconstruction approach. In this framework, the cosmological 

dynamics are driven by the phenomenological choice of the Hubble parameter 𝐻𝐻(𝑡𝑡). Since the metric evolution is fully 

determined by 𝐻𝐻(𝑡𝑡), equations (5) and (6) constitute a system of two equations with two unknowns, 𝜌𝜌(𝑡𝑡) and 𝑝𝑝(𝑡𝑡). Unlike standard 

forward-modelling where an equation of state 𝑝𝑝 = 𝜔𝜔𝜔𝜔  is assumed a priori, here we determine the necessary fluid properties 

required to sustain the chosen expansion history. Consequently, the effective equation of state parameter is derived dynamically 

as: 

𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)  =  𝑝𝑝(𝑡𝑡)/𝜌𝜌(𝑡𝑡)                                                                                                                                                                    (7) 

This allows us to analyse how the fluid behaviour evolves from early-time deceleration to late-time acceleration without imposing 

a rigid barotropic constraint. 
 

 

From equations (5), (6) and (7), we write, energy density, pressure and equation of state for KK FRW type universe in 𝑓𝑓(𝑅𝑅,𝑇𝑇) 

gravity are as follows: 

𝜌𝜌(𝑡𝑡) =  𝐴𝐴ℎ2−2𝜆𝜆ℎ1𝐴𝐴𝐴𝐴−2𝜆𝜆2                                                                                                                                                                             (8) 

𝑝𝑝(𝑡𝑡) =  𝜆𝜆ℎ2−𝐵𝐵ℎ1𝐴𝐴𝐴𝐴−2𝜆𝜆2                                                                                                                                                                              (9) 

𝜔𝜔(𝑡𝑡) =  𝜆𝜆ℎ2−𝐵𝐵ℎ1𝐴𝐴ℎ2−2𝜆𝜆ℎ1
                                                                                                                                                                         (10) 

where, ℎ1 = 3𝐻̇𝐻 + 6𝐻𝐻2 + 3𝑘𝑘
𝑎𝑎2 , ℎ2 = 6𝐻𝐻2 + 6𝑘𝑘

𝑎𝑎2, 𝐴𝐴 = (8𝜋𝜋 + 4𝜆𝜆) and B= (8𝜋𝜋 + 3𝜆𝜆). 
 

3. Role of Hubble Parameter in Cosmological Dynamics 
 

 

The Hubble parameter 𝐻𝐻(𝑡𝑡) = (𝑎̇𝑎 𝑎𝑎⁄ )  plays a central role in cosmology, defining the rate of expansion of the universe and linking 

the dynamics of spacetime to its energy content through the Friedmann equations. Its evolution governs whether the universe is 

undergoing acceleration or deceleration, as quantified by the deceleration parameter 𝑞𝑞(𝑡𝑡) = −1 −  𝐻̇𝐻 𝐻𝐻2⁄ . The specific form of 

𝐻𝐻(𝑡𝑡) dictates the behaviour of key cosmological variables such as the energy density 𝜌𝜌(𝑡𝑡),  pressure 𝑝𝑝(𝑡𝑡), the equation of state 

𝜔𝜔(𝑡𝑡), and the scale factor 𝑎𝑎(𝑡𝑡). Accurate modelling of 𝐻𝐻(𝑡𝑡) is essential for describing different phases of cosmic evolution, 

including inflation, matter radiation domination, and late-time acceleration. Since the Hubble parameter is also directly 

constrained by observations through redshift measurements and cosmic chronometers, it serves as a critical bridge between 

theory and observation for testing various cosmological and modified gravity models [Riess 1998, Planck 2020].  
 

For the graphical analysis presented in this study, the model parameters (such as 𝛼𝛼, 𝛾𝛾,𝛽𝛽, 𝛿𝛿,𝜓𝜓, 𝜉𝜉, 𝜇𝜇,𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆) have been chosen 

strategically to illustrate the distinct physical behaviours of each cosmological model. The specific values are selected not as a 

best fit to observational data, but to clearly demonstrate the qualitative nature of the solutions. This includes showcasing key 

cosmic features, such as a potential transition from a decelerated phase (𝑞𝑞 > 0) to an accelerated one (𝑞𝑞 < 0), and to examine 

the physical viability of key parameters within the 𝑓𝑓(𝑅𝑅,𝑇𝑇)  Kaluza-Klein framework. 
 

In our analysis, we have employed five different forms of the Hubble parameter to explore various realistic cosmic expansion 

scenarios: 

1. Emergent exponential model: 𝐻𝐻(𝑡𝑡) = [𝛾𝛾𝛾𝛾𝑒𝑒𝛾𝛾𝛾𝛾 (𝑒𝑒𝛾𝛾𝛾𝛾 + 𝜇𝜇)⁄ ]  , a smooth function ideal for 

unified evolution from early to late times, where 𝛾𝛾 acts as an exponential rate. [Nojiri 2006]. 

2. Intermediate generalized power-law model: 𝐻𝐻(𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑡𝑡𝜎𝜎−1, representing early 

accelerated expansion phases, where 𝜎𝜎 is a power-law index. 
3. Logamediate model: 𝐻𝐻(𝑡𝑡) = (𝛿𝛿𝛿𝛿 𝑙𝑙𝑙𝑙𝑙𝑙𝛽𝛽−1𝑡𝑡) 𝑡𝑡 ⁄  , 𝛿𝛿 > 0  and 𝛽𝛽 > 1.,which describes 

intermediate expansion behaviour, slower than de Sitter but faster than power-law, and is 

useful for modelling late-time acceleration [Barrow 2006]. 

4. Exponential decay model: 𝐻𝐻(𝑡𝑡) = 𝐻𝐻0 −
𝐻𝐻1
𝑒𝑒𝜉𝜉𝜉𝜉 , capturing late-time deviations from ΛCDM 

and useful for testing dark energy dynamics, where 𝜉𝜉 is an exponential decay rate. 

5. Emergent tanh expansion model: 𝐻𝐻(𝑡𝑡) = 𝜓𝜓 tanh ( 𝑡𝑡
𝑡𝑡0
), allowing for a smooth transition 

from deceleration to acceleration, where the constant value 𝜓𝜓 describes a late-time de Sitter 

exponential expansion 

 allowing for a smooth transition from deceleration to acceleration, where 
the constant value ψ describes a late-time de Sitter exponential expansion.

3.1 Model I: Emergent exponential model

The Hubble parameter

 

 
 

3.1 Model I: Emergent exponential model 
 
The Hubble parameter   

𝐻𝐻(𝑡𝑡) = 𝛾𝛾𝛾𝛾𝑒𝑒𝛾𝛾𝛾𝛾

(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)                                                                                                                                                                 (11) 

represents a smoothly evolving cosmological expansion model characterized by a finite early-time value and asymptotic 

approach toward a constant expansion rate at late times. This form is particularly useful in modelling a transition from decelerated 

to accelerated expansion, which is a key feature of the observed cosmic evolution supported by Type Ia supernovae and cosmic 

microwave background data [Riess 1998, Planck 2020]. At early times, the function yields a finite expansion rate 𝐻𝐻(𝑡𝑡) ≈ 𝛾𝛾𝛾𝛾
(1+𝜇𝜇) , 

thereby avoiding singularities and capturing a non-inflationary initial phase. As, 𝑡𝑡 → ∞ the Hubble rate approaches a constant 

value, 𝐻𝐻(𝑡𝑡) → 𝛾𝛾𝛾𝛾, effectively mimicking a de Sitter phase driven by a cosmological constant or dark energy. The deceleration 

parameter transitions from positive to negative values, indicating a natural evolution from deceleration to acceleration, in 

alignment with the standard cosmological timeline. Such a Hubble parameter is useful in the context of modified gravity theories 

and scalar field cosmology, as it allows for analytical reconstruction of potentials and matter interactions. It can also support 

emergent universe scenarios that do not originate from a Big Bang singularity, depending on parameter choices [Nojiri 2006, 

Capozziello 2011, Mukherjee 2006]. The model is flexible enough to accommodate both matter-dominated behaviour at 

intermediate times and dark-energy domination at late times, offering a unified description of cosmic history within a single 

analytical framework. 
 

For analysing the evolution and stability within the higher-dimensional Kaluza-Klein framework, one can easily derived the scale 

factor and deceleration parameter from equation (11) as follows; 

𝑎𝑎(𝑡𝑡) = 𝑎𝑎0 (𝑒𝑒𝛾𝛾𝛾𝛾 + 𝜇𝜇)𝑛𝑛                                                                                                                                                                                    (12) 

 𝑞𝑞(𝑡𝑡) = −1 − 𝜇𝜇
𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾                                                                                                                                                                                         (13) 

Furthermore, the expressions for energy density, pressure and equation of state parameter with the use of equations (11), (12) 
into (8)-(10) as follows; 

𝜌𝜌(𝑡𝑡) = 1
𝐷𝐷 [

(8𝜋𝜋+4𝜆𝜆) 6𝛾𝛾2𝑛𝑛2𝑒𝑒2𝛾𝛾𝛾𝛾−6𝜆𝜆𝛾𝛾2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾(𝜇𝜇+2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾)
(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2 

+ 6𝑘𝑘(8𝜋𝜋+3𝜆𝜆)
𝑎𝑎02 (𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2𝑛𝑛  ]                                                                                                         (14) 

𝑝𝑝(𝑡𝑡) = 1
𝐷𝐷 [

3𝛾𝛾2𝑛𝑛𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾[2 𝜆𝜆𝜆𝜆 𝑒𝑒𝛾𝛾𝛾𝛾−(8𝜋𝜋+3𝜆𝜆)(𝜇𝜇+2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾)]
(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2 

+ 3𝑘𝑘 (8𝜋𝜋−3𝜆𝜆)
𝑎𝑎02 (𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2𝑛𝑛]                                                                                            (15) 

  𝜔𝜔(𝑡𝑡) = [{3𝛾𝛾
2𝑛𝑛𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾[2 𝜆𝜆𝜆𝜆 𝑒𝑒𝛾𝛾𝛾𝛾−(8𝜋𝜋+3𝜆𝜆)(𝜇𝜇+2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾)]} 𝑎𝑎02 (𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2𝑛𝑛+3𝑘𝑘 (8𝜋𝜋−3𝜆𝜆)(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2 

{(8𝜋𝜋+4𝜆𝜆) 6𝛾𝛾2𝑛𝑛2𝑒𝑒2𝛾𝛾𝛾𝛾−6𝜆𝜆𝛾𝛾2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾(𝜇𝜇+2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾) }𝑎𝑎02 (𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2𝑛𝑛  +6𝑘𝑘(8𝜋𝜋+3𝜆𝜆)(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2 ]                                                             (16)  

where 𝐷𝐷 = (8𝜋𝜋 + 4𝜆𝜆)(8𝜋𝜋 + 3𝜆𝜆) − 2𝜆𝜆2. 

Using equation (3) and (12), the Kaluza-Klein Friedmann-Robertson-Walker (FRW) type logamediate Hubble universe within the 
framework of 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity is  
𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − (𝑎𝑎0

2 (𝑒𝑒𝛾𝛾𝛾𝛾 + 𝜇𝜇)2𝑛𝑛) { 𝑑𝑑𝑟𝑟2
1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2}                                                                    (17) 

3.1.1 Cosmological Dynamics of Model I: 
 

Parameter Early-Time Behaviour (𝑡𝑡 → 0+) 
Late-Time Behaviour   (𝑡𝑡 →
5) 

Interpretation 

𝜌𝜌(𝑡𝑡) High for  𝑘𝑘 = ±1; lower for  𝑘𝑘 = 0; all 
evolving toward convergence 

Stabilizes to a nearly constant 
value 

Dark energy dominance emerges; 
model supports different curvatures 
early on. 

𝑝𝑝(𝑡𝑡) Strongly negative, especially for  
𝑘𝑘 = 0; varies for 𝑘𝑘 = ±1 

Approaches small negative 
constant 

Drives cosmic acceleration, curvature 
affects early dynamics. 

𝜔𝜔(𝑡𝑡) From 0 (dust-like) or mild negative to 
strongly negative (near 𝜔𝜔 = −0.8) 

Converges to  𝜔𝜔 ≈ −0.8 for all  𝑘𝑘 Smooth transition from deceleration to 
acceleration; dark energy like 
behaviour. 

𝐻𝐻(𝑡𝑡) Steadily increases from( ~0.7) Asymptotically approaches( 
~1.2) 

Intermediate expansion: slower than 
exponential but faster than power-law. 

𝑞𝑞(𝑡𝑡) Strongly negative ( q ~ − 1.8) Approaches ( q ~ − 1) Indicates sustained and strong 
acceleration throughout the evolution. 

𝑎𝑎(𝑡𝑡) Starts small and grows slowly Grows very rapidly (super-
exponential-like) 

Continuous expansion, consistent with 
inflation and dark energy-driven 
growth 

represents a smoothly evolving cosmological expansion model characterized by a finite early-time value and asymptotic approach 
toward a constant expansion rate at late times. This form is particularly useful in modelling a transition from decelerated to accelerated 
expansion, which is a key feature of the observed cosmic evolution supported by Type Ia supernovae and cosmic microwave 
background data.16 At early times, the function yields a finite expansion rate 
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to accelerated expansion, which is a key feature of the observed cosmic evolution supported by Type Ia supernovae and cosmic 
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thereby avoiding singularities and capturing a non-inflationary initial phase. As, 𝑡𝑡 → ∞ the Hubble rate approaches a constant 

value, 𝐻𝐻(𝑡𝑡) → 𝛾𝛾𝛾𝛾, effectively mimicking a de Sitter phase driven by a cosmological constant or dark energy. The deceleration 

parameter transitions from positive to negative values, indicating a natural evolution from deceleration to acceleration, in 

alignment with the standard cosmological timeline. Such a Hubble parameter is useful in the context of modified gravity theories 

and scalar field cosmology, as it allows for analytical reconstruction of potentials and matter interactions. It can also support 

emergent universe scenarios that do not originate from a Big Bang singularity, depending on parameter choices [Nojiri 2006, 

Capozziello 2011, Mukherjee 2006]. The model is flexible enough to accommodate both matter-dominated behaviour at 

intermediate times and dark-energy domination at late times, offering a unified description of cosmic history within a single 

analytical framework. 
 

For analysing the evolution and stability within the higher-dimensional Kaluza-Klein framework, one can easily derived the scale 

factor and deceleration parameter from equation (11) as follows; 

𝑎𝑎(𝑡𝑡) = 𝑎𝑎0 (𝑒𝑒𝛾𝛾𝛾𝛾 + 𝜇𝜇)𝑛𝑛                                                                                                                                                                                    (12) 

 𝑞𝑞(𝑡𝑡) = −1 − 𝜇𝜇
𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾                                                                                                                                                                                         (13) 

Furthermore, the expressions for energy density, pressure and equation of state parameter with the use of equations (11), (12) 
into (8)-(10) as follows; 

𝜌𝜌(𝑡𝑡) = 1
𝐷𝐷 [

(8𝜋𝜋+4𝜆𝜆) 6𝛾𝛾2𝑛𝑛2𝑒𝑒2𝛾𝛾𝛾𝛾−6𝜆𝜆𝛾𝛾2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾(𝜇𝜇+2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾)
(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2 

+ 6𝑘𝑘(8𝜋𝜋+3𝜆𝜆)
𝑎𝑎02 (𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2𝑛𝑛  ]                                                                                                         (14) 

𝑝𝑝(𝑡𝑡) = 1
𝐷𝐷 [

3𝛾𝛾2𝑛𝑛𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾[2 𝜆𝜆𝜆𝜆 𝑒𝑒𝛾𝛾𝛾𝛾−(8𝜋𝜋+3𝜆𝜆)(𝜇𝜇+2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾)]
(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2 

+ 3𝑘𝑘 (8𝜋𝜋−3𝜆𝜆)
𝑎𝑎02 (𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2𝑛𝑛]                                                                                            (15) 

  𝜔𝜔(𝑡𝑡) = [{3𝛾𝛾
2𝑛𝑛𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾[2 𝜆𝜆𝜆𝜆 𝑒𝑒𝛾𝛾𝛾𝛾−(8𝜋𝜋+3𝜆𝜆)(𝜇𝜇+2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾)]} 𝑎𝑎02 (𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2𝑛𝑛+3𝑘𝑘 (8𝜋𝜋−3𝜆𝜆)(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2 

{(8𝜋𝜋+4𝜆𝜆) 6𝛾𝛾2𝑛𝑛2𝑒𝑒2𝛾𝛾𝛾𝛾−6𝜆𝜆𝛾𝛾2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾(𝜇𝜇+2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾) }𝑎𝑎02 (𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2𝑛𝑛  +6𝑘𝑘(8𝜋𝜋+3𝜆𝜆)(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2 ]                                                             (16)  

where 𝐷𝐷 = (8𝜋𝜋 + 4𝜆𝜆)(8𝜋𝜋 + 3𝜆𝜆) − 2𝜆𝜆2. 

Using equation (3) and (12), the Kaluza-Klein Friedmann-Robertson-Walker (FRW) type logamediate Hubble universe within the 
framework of 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity is  
𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − (𝑎𝑎0

2 (𝑒𝑒𝛾𝛾𝛾𝛾 + 𝜇𝜇)2𝑛𝑛) { 𝑑𝑑𝑟𝑟2
1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2}                                                                    (17) 

3.1.1 Cosmological Dynamics of Model I: 
 

Parameter Early-Time Behaviour (𝑡𝑡 → 0+) 
Late-Time Behaviour   (𝑡𝑡 →
5) 

Interpretation 

𝜌𝜌(𝑡𝑡) High for  𝑘𝑘 = ±1; lower for  𝑘𝑘 = 0; all 
evolving toward convergence 

Stabilizes to a nearly constant 
value 

Dark energy dominance emerges; 
model supports different curvatures 
early on. 

𝑝𝑝(𝑡𝑡) Strongly negative, especially for  
𝑘𝑘 = 0; varies for 𝑘𝑘 = ±1 

Approaches small negative 
constant 

Drives cosmic acceleration, curvature 
affects early dynamics. 

𝜔𝜔(𝑡𝑡) From 0 (dust-like) or mild negative to 
strongly negative (near 𝜔𝜔 = −0.8) 

Converges to  𝜔𝜔 ≈ −0.8 for all  𝑘𝑘 Smooth transition from deceleration to 
acceleration; dark energy like 
behaviour. 

𝐻𝐻(𝑡𝑡) Steadily increases from( ~0.7) Asymptotically approaches( 
~1.2) 

Intermediate expansion: slower than 
exponential but faster than power-law. 

𝑞𝑞(𝑡𝑡) Strongly negative ( q ~ − 1.8) Approaches ( q ~ − 1) Indicates sustained and strong 
acceleration throughout the evolution. 

𝑎𝑎(𝑡𝑡) Starts small and grows slowly Grows very rapidly (super-
exponential-like) 

Continuous expansion, consistent with 
inflation and dark energy-driven 
growth 

 thereby avoiding singularities and capturing 
a non-inflationary initial phase. As, t → ∞ the Hubble rate approaches a constant value, H(t) → γn, effectively mimicking a de Sitter 
phase driven by a cosmological constant or dark energy. The deceleration parameter transitions from positive to negative values, 
indicating a natural evolution from deceleration to acceleration, in alignment with the standard cosmological timeline. Such a Hubble 
parameter is useful in the context of modified gravity theories and scalar field cosmology, as it allows for analytical reconstruction of 
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potentials and matter interactions. It can also support emergent universe scenarios that do not originate from a Big Bang singularity, 
depending on parameter choices.20,29,34 The model is flexible enough to accommodate both matter-dominated behaviour at intermediate 
times and dark-energy domination at late times, offering a unified description of cosmic history within a single analytical framework.

For analysing the evolution and stability within the higher-dimensional Kaluza-Klein framework, one can easily derived the scale 
factor and deceleration parameter from equation (11) as follows;
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value, 𝐻𝐻(𝑡𝑡) → 𝛾𝛾𝛾𝛾, effectively mimicking a de Sitter phase driven by a cosmological constant or dark energy. The deceleration 

parameter transitions from positive to negative values, indicating a natural evolution from deceleration to acceleration, in 

alignment with the standard cosmological timeline. Such a Hubble parameter is useful in the context of modified gravity theories 

and scalar field cosmology, as it allows for analytical reconstruction of potentials and matter interactions. It can also support 

emergent universe scenarios that do not originate from a Big Bang singularity, depending on parameter choices [Nojiri 2006, 

Capozziello 2011, Mukherjee 2006]. The model is flexible enough to accommodate both matter-dominated behaviour at 

intermediate times and dark-energy domination at late times, offering a unified description of cosmic history within a single 

analytical framework. 
 

For analysing the evolution and stability within the higher-dimensional Kaluza-Klein framework, one can easily derived the scale 

factor and deceleration parameter from equation (11) as follows; 

𝑎𝑎(𝑡𝑡) = 𝑎𝑎0 (𝑒𝑒𝛾𝛾𝛾𝛾 + 𝜇𝜇)𝑛𝑛                                                                                                                                                                                    (12) 

 𝑞𝑞(𝑡𝑡) = −1 − 𝜇𝜇
𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾                                                                                                                                                                                         (13) 

Furthermore, the expressions for energy density, pressure and equation of state parameter with the use of equations (11), (12) 
into (8)-(10) as follows; 

𝜌𝜌(𝑡𝑡) = 1
𝐷𝐷 [

(8𝜋𝜋+4𝜆𝜆) 6𝛾𝛾2𝑛𝑛2𝑒𝑒2𝛾𝛾𝛾𝛾−6𝜆𝜆𝛾𝛾2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾(𝜇𝜇+2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾)
(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2 

+ 6𝑘𝑘(8𝜋𝜋+3𝜆𝜆)
𝑎𝑎02 (𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2𝑛𝑛  ]                                                                                                         (14) 

𝑝𝑝(𝑡𝑡) = 1
𝐷𝐷 [

3𝛾𝛾2𝑛𝑛𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾[2 𝜆𝜆𝜆𝜆 𝑒𝑒𝛾𝛾𝛾𝛾−(8𝜋𝜋+3𝜆𝜆)(𝜇𝜇+2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾)]
(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2 

+ 3𝑘𝑘 (8𝜋𝜋−3𝜆𝜆)
𝑎𝑎02 (𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2𝑛𝑛]                                                                                            (15) 

  𝜔𝜔(𝑡𝑡) = [{3𝛾𝛾
2𝑛𝑛𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾[2 𝜆𝜆𝜆𝜆 𝑒𝑒𝛾𝛾𝛾𝛾−(8𝜋𝜋+3𝜆𝜆)(𝜇𝜇+2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾)]} 𝑎𝑎02 (𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2𝑛𝑛+3𝑘𝑘 (8𝜋𝜋−3𝜆𝜆)(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2 

{(8𝜋𝜋+4𝜆𝜆) 6𝛾𝛾2𝑛𝑛2𝑒𝑒2𝛾𝛾𝛾𝛾−6𝜆𝜆𝛾𝛾2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾(𝜇𝜇+2𝑛𝑛𝑒𝑒𝛾𝛾𝛾𝛾) }𝑎𝑎02 (𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2𝑛𝑛  +6𝑘𝑘(8𝜋𝜋+3𝜆𝜆)(𝑒𝑒𝛾𝛾𝛾𝛾+𝜇𝜇)2 ]                                                             (16)  

where 𝐷𝐷 = (8𝜋𝜋 + 4𝜆𝜆)(8𝜋𝜋 + 3𝜆𝜆) − 2𝜆𝜆2. 

Using equation (3) and (12), the Kaluza-Klein Friedmann-Robertson-Walker (FRW) type logamediate Hubble universe within the 
framework of 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity is  
𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − (𝑎𝑎0

2 (𝑒𝑒𝛾𝛾𝛾𝛾 + 𝜇𝜇)2𝑛𝑛) { 𝑑𝑑𝑟𝑟2
1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2}                                                                    (17) 

3.1.1 Cosmological Dynamics of Model I: 
 

Parameter Early-Time Behaviour (𝑡𝑡 → 0+) 
Late-Time Behaviour   (𝑡𝑡 →
5) 

Interpretation 

𝜌𝜌(𝑡𝑡) High for  𝑘𝑘 = ±1; lower for  𝑘𝑘 = 0; all 
evolving toward convergence 

Stabilizes to a nearly constant 
value 

Dark energy dominance emerges; 
model supports different curvatures 
early on. 

𝑝𝑝(𝑡𝑡) Strongly negative, especially for  
𝑘𝑘 = 0; varies for 𝑘𝑘 = ±1 

Approaches small negative 
constant 

Drives cosmic acceleration, curvature 
affects early dynamics. 

𝜔𝜔(𝑡𝑡) From 0 (dust-like) or mild negative to 
strongly negative (near 𝜔𝜔 = −0.8) 

Converges to  𝜔𝜔 ≈ −0.8 for all  𝑘𝑘 Smooth transition from deceleration to 
acceleration; dark energy like 
behaviour. 

𝐻𝐻(𝑡𝑡) Steadily increases from( ~0.7) Asymptotically approaches( 
~1.2) 

Intermediate expansion: slower than 
exponential but faster than power-law. 

𝑞𝑞(𝑡𝑡) Strongly negative ( q ~ − 1.8) Approaches ( q ~ − 1) Indicates sustained and strong 
acceleration throughout the evolution. 

𝑎𝑎(𝑡𝑡) Starts small and grows slowly Grows very rapidly (super-
exponential-like) 

Continuous expansion, consistent with 
inflation and dark energy-driven 
growth 

  
Furthermore, the expressions for energy density, pressure and equation of state parameter with the use of equations (11), (12) into 
(8)-(10) as follows;
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Interpretation 

𝜌𝜌(𝑡𝑡) High for  𝑘𝑘 = ±1; lower for  𝑘𝑘 = 0; all 
evolving toward convergence 

Stabilizes to a nearly constant 
value 

Dark energy dominance emerges; 
model supports different curvatures 
early on. 

𝑝𝑝(𝑡𝑡) Strongly negative, especially for  
𝑘𝑘 = 0; varies for 𝑘𝑘 = ±1 

Approaches small negative 
constant 

Drives cosmic acceleration, curvature 
affects early dynamics. 

𝜔𝜔(𝑡𝑡) From 0 (dust-like) or mild negative to 
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Intermediate expansion: slower than 
exponential but faster than power-law. 

𝑞𝑞(𝑡𝑡) Strongly negative ( q ~ − 1.8) Approaches ( q ~ − 1) Indicates sustained and strong 
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𝑎𝑎(𝑡𝑡) Starts small and grows slowly Grows very rapidly (super-
exponential-like) 

Continuous expansion, consistent with 
inflation and dark energy-driven 
growth 
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framework of 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity is  
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2 (𝑒𝑒𝛾𝛾𝛾𝛾 + 𝜇𝜇)2𝑛𝑛) { 𝑑𝑑𝑟𝑟2
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3.1.1 Cosmological Dynamics of Model I: 
 

Parameter Early-Time Behaviour (𝑡𝑡 → 0+) 
Late-Time Behaviour   (𝑡𝑡 →
5) 

Interpretation 

𝜌𝜌(𝑡𝑡) High for  𝑘𝑘 = ±1; lower for  𝑘𝑘 = 0; all 
evolving toward convergence 

Stabilizes to a nearly constant 
value 

Dark energy dominance emerges; 
model supports different curvatures 
early on. 

𝑝𝑝(𝑡𝑡) Strongly negative, especially for  
𝑘𝑘 = 0; varies for 𝑘𝑘 = ±1 

Approaches small negative 
constant 

Drives cosmic acceleration, curvature 
affects early dynamics. 

𝜔𝜔(𝑡𝑡) From 0 (dust-like) or mild negative to 
strongly negative (near 𝜔𝜔 = −0.8) 

Converges to  𝜔𝜔 ≈ −0.8 for all  𝑘𝑘 Smooth transition from deceleration to 
acceleration; dark energy like 
behaviour. 

𝐻𝐻(𝑡𝑡) Steadily increases from( ~0.7) Asymptotically approaches( 
~1.2) 

Intermediate expansion: slower than 
exponential but faster than power-law. 

𝑞𝑞(𝑡𝑡) Strongly negative ( q ~ − 1.8) Approaches ( q ~ − 1) Indicates sustained and strong 
acceleration throughout the evolution. 

𝑎𝑎(𝑡𝑡) Starts small and grows slowly Grows very rapidly (super-
exponential-like) 

Continuous expansion, consistent with 
inflation and dark energy-driven 
growth 
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The above table summarizes the cosmological dynamics of Model I, illustrating a smooth transition from an early, curvature-dependent 
phase to a stable, late-time accelerated universe. The model begins in a state of strong means super acceleration (q ~ -1.8), driven by 
a negative pressure. As the universe evolves, the energy density and pressure stabilize, and the equation of state parameter converges 
to a dark energy like value of ω ≈ -0.8. This dynamic causes the deceleration parameter to settle at (q ~ -1), leading to a sustained, 
rapid, super-exponential growth of the scale factor at late times. For small t means early times, t → 0,  eγt ≈ 1 that implies 
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cosmological constant [Riess et al. 1998; Planck Collaboration 2020]. For the deceleration parameter, at early 

times , 𝑞𝑞0 = −1 − 𝜇𝜇
𝑛𝑛 , if 𝜇𝜇,𝑛𝑛 > 0 then   𝑞𝑞0 < −1 indicating a phantom like phase with super accelerated expansion 

where the expansion rate increases over time more rapidly than in a de Sitter universe [Caldwell 2002].                                          

For large 𝑡𝑡, 𝑞𝑞(𝑡𝑡) → −1 − 𝜇𝜇
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transitions toward a standard exponential acceleration, consistent with a cosmological constant scenario [Nojiri 

& Odintsov 2006]. Thus, the universe starts in a super-accelerated (phantom) phase and asymptotically approaches 

a constant-acceleration phase with 𝑞𝑞 = −1, showing a smooth transition from phantom-like behaviour to de Sitter 

expansion. The scale factor grows exponentially at late times. This is typical of late-time dark energy-dominated 

cosmology, where the accelerated expansion becomes dominant [Nojiri et al. 2011; Sahni & Starobinsky 2000]. 

Overall, 𝑎𝑎(𝑡𝑡) increases smoothly, with the curve becoming steeper over time and turning exponential at late times, 

confirming an accelerating cosmic expansion consistent with observations. 
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 μ, H(t) ≈ γn. Indicating that the Hubble parameter asymptotically approaches a constat value γn. This behaviour 
corresponds to a de Sitter like expansion, which is characteristic of dark energy-dominated universes with a cosmological constant.16,18 
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 , the deceleration parameter tends to -1, confirming that the universe transitions toward a standard 
exponential acceleration, consistent with a cosmological constant scenario.29 Thus, the universe starts in a super-accelerated (phantom) 
phase and asymptotically approaches a constant-acceleration phase with q = -1, showing a smooth transition from phantom-like 
behaviour to de Sitter expansion. The scale factor grows exponentially at late times. This is typical of late-time dark energy-dominated 
cosmology, where the accelerated expansion becomes dominant.12,38 Overall, a(t) increases smoothly, with the curve becoming steeper 
over time and turning exponential at late times, confirming an accelerating cosmic expansion consistent with observations.
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Fig.1. Plots of cosmological parameters Vs. time for Model I 
Figure 1, provides a consolidated view of the Emergent exponential model (Model I), illustrating its evolution into 

a stable, accelerating universe. The energy density (𝜌𝜌) remains positive while the pressure (𝑝𝑝) becomes negative, 

with both parameters quickly evolving from curvature dependent initial values to a constant state at late times. This 

transition is clearly reflected in the equation of state ( 𝜔𝜔) which smoothly evolves from a dust-like or mild negative 

state and converges to 𝜔𝜔 ≈ −0.8, acting as a dark energy fluid. This dynamic is driven by a Hubble parameter (𝐻𝐻) 

that steadily increases toward a constant value, causing a strong, sustained acceleration. This is confirmed by the 

deceleration parameter (𝑞𝑞), which begins in a super-accelerated phantom phase (𝑞𝑞 ≈ −1.8) before rising to a 

standard de Sitter-like state (𝑞𝑞 =  −1). Consequently, the scale factor (𝑎𝑎) shows a rapid, exponential-like growth, 

confirming a continuously accelerating cosmic expansion. 

3.2 Model II: Intermediate generalized power-law model  
 
The time-dependent Hubble parameter  

𝐻𝐻(𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑡𝑡𝜎𝜎−1.                                                                                                                                                                          (18) 

represents a generalized power-law expansion model, which is widely used in cosmology to investigate various phases of the 

universe's evolution. In this expression 𝛼𝛼 is a positive dimensional constant governing the scale of expansion, 𝜎𝜎  is a 

dimensionless index controlling the nature of expansion, and   𝑡𝑡  is the cosmic time.  The corresponding scale factor is given by 

𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝛼𝛼𝑡𝑡𝜎𝜎, which demonstrates accelerated or decelerated expansion depending on the choice of  𝜎𝜎 . For  𝜎𝜎 = 1, the model 

reduces to a de Sitter-like expansion 𝐻𝐻(𝑡𝑡) = 𝛼𝛼, producing an exponential scale factor 𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝛼𝛼𝛼𝛼, characteristic of a universe 

dominated by a cosmological constant or vacuum energy.16 When 𝜎𝜎 > 1, the Hubble parameter increases with time, representing 

𝑎𝑎(𝑡𝑡) Starts small and grows slowly Grows very rapidly (super-
exponential-like) 

Continuous expansion, consistent with 
inflation and dark energy-driven 
growth 

Fig.1. Plots of cosmological parameters Vs. time for Model I

Figure 1, provides a consolidated view of the Emergent exponential model (Model I), illustrating its evolution into a stable, accelerating 
universe. The energy density (ρ)  remains positive while the pressure (p) becomes negative, with both parameters quickly evolving 
from curvature dependent initial values to a constant state at late times. This transition is clearly reflected in the equation of state (ω) 
which smoothly evolves from a dust-like or mild negative state and converges to ω ≈ -0.8, acting as a dark energy fluid. This dynamic 
is driven by a Hubble parameter (H) that steadily increases toward a constant value, causing a strong, sustained acceleration. This is 
confirmed by the deceleration parameter (q), which begins in a super-accelerated phantom phase (q ≈ -1.8) before rising to a standard 
de Sitter-like state (q = -1). Consequently, the scale factor (a) shows a rapid, exponential-like growth, confirming a continuously 
accelerating cosmic expansion.
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The time-dependent Hubble parameter

 

 
 

Figure 1, provides a consolidated view of the Emergent exponential model (Model I), illustrating its evolution into 

a stable, accelerating universe. The energy density (𝜌𝜌) remains positive while the pressure (𝑝𝑝) becomes negative, 

with both parameters quickly evolving from curvature dependent initial values to a constant state at late times. This 

transition is clearly reflected in the equation of state ( 𝜔𝜔) which smoothly evolves from a dust-like or mild negative 

state and converges to 𝜔𝜔 ≈ −0.8, acting as a dark energy fluid. This dynamic is driven by a Hubble parameter (𝐻𝐻) 

that steadily increases toward a constant value, causing a strong, sustained acceleration. This is confirmed by the 

deceleration parameter (𝑞𝑞), which begins in a super-accelerated phantom phase (𝑞𝑞 ≈ −1.8) before rising to a 

standard de Sitter-like state (𝑞𝑞 =  −1). Consequently, the scale factor (𝑎𝑎) shows a rapid, exponential-like growth, 

confirming a continuously accelerating cosmic expansion. 

3.2 Model II: Intermediate generalized power-law model  
 
The time-dependent Hubble parameter  

𝐻𝐻(𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑡𝑡𝜎𝜎−1.                                                                                                                                                                          (18) 

represents a generalized power-law expansion model, which is widely used in cosmology to investigate various phases of the 

universe's evolution. In this expression 𝛼𝛼 is a positive dimensional constant governing the scale of expansion, 𝜎𝜎  is a 

dimensionless index controlling the nature of expansion, and   𝑡𝑡  is the cosmic time.  The corresponding scale factor is given by 

𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝛼𝛼𝑡𝑡𝜎𝜎, which demonstrates accelerated or decelerated expansion depending on the choice of  𝜎𝜎 . For  𝜎𝜎 = 1, the model 

reduces to a de Sitter-like expansion 𝐻𝐻(𝑡𝑡) = 𝛼𝛼, producing an exponential scale factor 𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝛼𝛼𝛼𝛼, characteristic of a universe 

dominated by a cosmological constant or vacuum energy [Riess et al., 1998]. When 𝜎𝜎 > 1, the Hubble parameter increases with 

time, representing a super accelerated expansion or phantom energy behaviour, as discussed by [Caldwell, Kamionkowski 

and Weinberg, 2003]. In contrast, for 0 < 𝜎𝜎 < 1, 𝐻𝐻(𝑡𝑡) decreases with time, corresponding to decelerated expansion, suitable 

for modelling early-time radiation or matter-dominated epochs [Peebles and Ratra, 2003]. These cases allow the universe to 

transition from deceleration to acceleration as supported by current observational data from supernovae and the cosmic 

microwave background [Planck Collaboration, 2018]. The flexibility of this model lies in its capacity to describe both early- 

and late-time behaviours of the universe. Notably, for 𝜎𝜎 > 1 , the scale factor remains finite at 𝑡𝑡 = 0, offering a non-singular 

origin that supports bouncing or emergent cosmologies [Singh, Sami, and Dadhich, 2003]. These models avoid the initial 

singularity problem of the standard Big Bang cosmology and align with quantum gravity expectations. Thus, this Hubble 

parametrization serves as a powerful phenomenological tool to explore the complete cosmic history from early deceleration to 

late time acceleration and to test various modified gravity and dark energy scenarios under observational constraints. 
 

For analysing the evolution and stability within the higher-dimensional Kaluza-Klein framework, one can easily derived the scale 

factor and deceleration parameter from equation (18) as follows; 

  𝑎𝑎(𝑡𝑡) = 𝑎𝑎0𝑒𝑒𝛼𝛼𝑡𝑡
𝜎𝜎 .                                                                                                                                                     (19)  

  𝑞𝑞(𝑡𝑡) = −1 − 1
2𝑡𝑡2                                                                                                                                                    (20) 

 
Furthermore, we have calculated the expressions for energy density, pressure and equation of state parameter with the use of 

equations (18), (19) into (8)-(10) as follows;  
 

 𝜌𝜌(𝑡𝑡) = 1
𝐷𝐷 [6𝜎𝜎𝜎𝜎 ((8𝜋𝜋 + 4𝜆𝜆) 𝑡𝑡2(𝜎𝜎−1)−𝜆𝜆(𝜎𝜎 − 1)𝑡𝑡𝜎𝜎−2) + 6𝑘𝑘(8𝜋𝜋 + 3𝜆𝜆)𝑎𝑎0−2𝑒𝑒−2𝛼𝛼𝑡𝑡𝜎𝜎]                                                    (21) 
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Using equation (3) and (19), the Kaluza-Klein Friedmann-Robertson-Walker (FRW) type logamediate Hubble universe 
within the framework of 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity is  
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represents a generalized power-law expansion model, which is widely used in cosmology to investigate various phases of the 
universe’s evolution. In this expression α is a positive dimensional constant governing the scale of expansion, σ  is a dimensionless 
index controlling the nature of expansion, and t is the cosmic time. The corresponding scale factor is given by 

 
 

Figure 1, provides a consolidated view of the Emergent exponential model (Model I), illustrating its evolution into 

a stable, accelerating universe. The energy density (𝜌𝜌) remains positive while the pressure (𝑝𝑝) becomes negative, 

with both parameters quickly evolving from curvature dependent initial values to a constant state at late times. This 

transition is clearly reflected in the equation of state ( 𝜔𝜔) which smoothly evolves from a dust-like or mild negative 

state and converges to 𝜔𝜔 ≈ −0.8, acting as a dark energy fluid. This dynamic is driven by a Hubble parameter (𝐻𝐻) 

that steadily increases toward a constant value, causing a strong, sustained acceleration. This is confirmed by the 

deceleration parameter (𝑞𝑞), which begins in a super-accelerated phantom phase (𝑞𝑞 ≈ −1.8) before rising to a 

standard de Sitter-like state (𝑞𝑞 =  −1). Consequently, the scale factor (𝑎𝑎) shows a rapid, exponential-like growth, 

confirming a continuously accelerating cosmic expansion. 

3.2 Model II: Intermediate generalized power-law model  
 
The time-dependent Hubble parameter  
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dimensionless index controlling the nature of expansion, and   𝑡𝑡  is the cosmic time.  The corresponding scale factor is given by 

𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝛼𝛼𝑡𝑡𝜎𝜎, which demonstrates accelerated or decelerated expansion depending on the choice of  𝜎𝜎 . For  𝜎𝜎 = 1, the model 

reduces to a de Sitter-like expansion 𝐻𝐻(𝑡𝑡) = 𝛼𝛼, producing an exponential scale factor 𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝛼𝛼𝛼𝛼, characteristic of a universe 

dominated by a cosmological constant or vacuum energy [Riess et al., 1998]. When 𝜎𝜎 > 1, the Hubble parameter increases with 
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and Weinberg, 2003]. In contrast, for 0 < 𝜎𝜎 < 1, 𝐻𝐻(𝑡𝑡) decreases with time, corresponding to decelerated expansion, suitable 

for modelling early-time radiation or matter-dominated epochs [Peebles and Ratra, 2003]. These cases allow the universe to 

transition from deceleration to acceleration as supported by current observational data from supernovae and the cosmic 

microwave background [Planck Collaboration, 2018]. The flexibility of this model lies in its capacity to describe both early- 

and late-time behaviours of the universe. Notably, for 𝜎𝜎 > 1 , the scale factor remains finite at 𝑡𝑡 = 0, offering a non-singular 

origin that supports bouncing or emergent cosmologies [Singh, Sami, and Dadhich, 2003]. These models avoid the initial 

singularity problem of the standard Big Bang cosmology and align with quantum gravity expectations. Thus, this Hubble 

parametrization serves as a powerful phenomenological tool to explore the complete cosmic history from early deceleration to 

late time acceleration and to test various modified gravity and dark energy scenarios under observational constraints. 
 

For analysing the evolution and stability within the higher-dimensional Kaluza-Klein framework, one can easily derived the scale 
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  𝑞𝑞(𝑡𝑡) = −1 − 1
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expansion, suitable for modelling early-time radiation or matter-dominated epochs.15 These cases allow the universe to transition from 
deceleration to acceleration as supported by current observational data from supernovae and the cosmic microwave background.18 
The flexibility of this model lies in its capacity to describe both early- and late-time behaviours of the universe. Notably, for σ > 
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For analysing the evolution and stability within the higher-dimensional Kaluza-Klein framework, one can easily derived the scale 
factor and deceleration parameter from equation (18) as follows;
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(18), (19) into (8)-(10) as follows;
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𝜎𝜎]                                              (22) 

 𝜔𝜔(𝑡𝑡) = [−3𝜎𝜎𝛼𝛼 {2𝜎𝜎𝛼𝛼 (8𝜋𝜋+2𝜆𝜆)𝑡𝑡2(𝜎𝜎−1)+(8𝜋𝜋+3𝜆𝜆)(𝜎𝜎−1)𝑡𝑡𝜎𝜎−2}−3𝑘𝑘(8𝜋𝜋+𝜆𝜆)𝑎𝑎0−2𝑒𝑒−2𝛼𝛼𝑡𝑡
𝜎𝜎

6𝜎𝜎𝛼𝛼 ((8𝜋𝜋+4𝜆𝜆) 𝑡𝑡2(𝜎𝜎−1)−𝜆𝜆(𝜎𝜎−1)𝑡𝑡𝜎𝜎−2)+6𝑘𝑘(8𝜋𝜋+3𝜆𝜆)𝑎𝑎0−2𝑒𝑒−2𝛼𝛼𝑡𝑡𝜎𝜎
]                                                    (23) 

Using equation (3) and (19), the Kaluza-Klein Friedmann-Robertson-Walker (FRW) type logamediate Hubble universe 
within the framework of 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity is  

𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − (𝑎𝑎02𝑒𝑒2𝛼𝛼𝑡𝑡
𝜎𝜎) { 𝑑𝑑𝑟𝑟2

1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2}                                                      (24) 

Using equation (3) and (19), the Kaluza-Klein Friedmann-Robertson-Walker (FRW) type logamediate Hubble universe within the 
framework of f(R,T) gravity is

 
 
 

Figure 1, provides a consolidated view of the Emergent exponential model (Model I), illustrating its evolution into 

a stable, accelerating universe. The energy density (𝜌𝜌) remains positive while the pressure (𝑝𝑝) becomes negative, 

with both parameters quickly evolving from curvature dependent initial values to a constant state at late times. This 

transition is clearly reflected in the equation of state ( 𝜔𝜔) which smoothly evolves from a dust-like or mild negative 

state and converges to 𝜔𝜔 ≈ −0.8, acting as a dark energy fluid. This dynamic is driven by a Hubble parameter (𝐻𝐻) 

that steadily increases toward a constant value, causing a strong, sustained acceleration. This is confirmed by the 

deceleration parameter (𝑞𝑞), which begins in a super-accelerated phantom phase (𝑞𝑞 ≈ −1.8) before rising to a 

standard de Sitter-like state (𝑞𝑞 =  −1). Consequently, the scale factor (𝑎𝑎) shows a rapid, exponential-like growth, 

confirming a continuously accelerating cosmic expansion. 

3.2 Model II: Intermediate generalized power-law model  
 
The time-dependent Hubble parameter  

𝐻𝐻(𝑡𝑡) = 𝛼𝛼𝛼𝛼𝑡𝑡𝜎𝜎−1.                                                                                                                                                                          (18) 

represents a generalized power-law expansion model, which is widely used in cosmology to investigate various phases of the 

universe's evolution. In this expression 𝛼𝛼 is a positive dimensional constant governing the scale of expansion, 𝜎𝜎  is a 

dimensionless index controlling the nature of expansion, and   𝑡𝑡  is the cosmic time.  The corresponding scale factor is given by 

𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝛼𝛼𝑡𝑡𝜎𝜎, which demonstrates accelerated or decelerated expansion depending on the choice of  𝜎𝜎 . For  𝜎𝜎 = 1, the model 

reduces to a de Sitter-like expansion 𝐻𝐻(𝑡𝑡) = 𝛼𝛼, producing an exponential scale factor 𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝛼𝛼𝛼𝛼, characteristic of a universe 

dominated by a cosmological constant or vacuum energy [Riess et al., 1998]. When 𝜎𝜎 > 1, the Hubble parameter increases with 

time, representing a super accelerated expansion or phantom energy behaviour, as discussed by [Caldwell, Kamionkowski 

and Weinberg, 2003]. In contrast, for 0 < 𝜎𝜎 < 1, 𝐻𝐻(𝑡𝑡) decreases with time, corresponding to decelerated expansion, suitable 

for modelling early-time radiation or matter-dominated epochs [Peebles and Ratra, 2003]. These cases allow the universe to 

transition from deceleration to acceleration as supported by current observational data from supernovae and the cosmic 

microwave background [Planck Collaboration, 2018]. The flexibility of this model lies in its capacity to describe both early- 

and late-time behaviours of the universe. Notably, for 𝜎𝜎 > 1 , the scale factor remains finite at 𝑡𝑡 = 0, offering a non-singular 

origin that supports bouncing or emergent cosmologies [Singh, Sami, and Dadhich, 2003]. These models avoid the initial 

singularity problem of the standard Big Bang cosmology and align with quantum gravity expectations. Thus, this Hubble 

parametrization serves as a powerful phenomenological tool to explore the complete cosmic history from early deceleration to 

late time acceleration and to test various modified gravity and dark energy scenarios under observational constraints. 
 

For analysing the evolution and stability within the higher-dimensional Kaluza-Klein framework, one can easily derived the scale 

factor and deceleration parameter from equation (18) as follows; 

  𝑎𝑎(𝑡𝑡) = 𝑎𝑎0𝑒𝑒𝛼𝛼𝑡𝑡
𝜎𝜎 .                                                                                                                                                     (19)  

  𝑞𝑞(𝑡𝑡) = −1 − 1
2𝑡𝑡2                                                                                                                                                    (20) 

 
Furthermore, we have calculated the expressions for energy density, pressure and equation of state parameter with the use of 

equations (18), (19) into (8)-(10) as follows;  
 

 𝜌𝜌(𝑡𝑡) = 1
𝐷𝐷 [6𝜎𝜎𝜎𝜎 ((8𝜋𝜋 + 4𝜆𝜆) 𝑡𝑡2(𝜎𝜎−1)−𝜆𝜆(𝜎𝜎 − 1)𝑡𝑡𝜎𝜎−2) + 6𝑘𝑘(8𝜋𝜋 + 3𝜆𝜆)𝑎𝑎0−2𝑒𝑒−2𝛼𝛼𝑡𝑡𝜎𝜎]                                                    (21) 

𝑝𝑝(𝑡𝑡) = 1
𝐷𝐷 [−3𝜎𝜎𝛼𝛼 {2𝜎𝜎𝛼𝛼 (8𝜋𝜋 + 2𝜆𝜆)𝑡𝑡2(𝜎𝜎−1) + (8𝜋𝜋 + 3𝜆𝜆)(𝜎𝜎 − 1)𝑡𝑡𝜎𝜎−2} − 3𝑘𝑘(8𝜋𝜋 + 𝜆𝜆)𝑎𝑎0−2𝑒𝑒−2𝛼𝛼𝑡𝑡

𝜎𝜎]                                              (22) 

 𝜔𝜔(𝑡𝑡) = [−3𝜎𝜎𝛼𝛼 {2𝜎𝜎𝛼𝛼 (8𝜋𝜋+2𝜆𝜆)𝑡𝑡2(𝜎𝜎−1)+(8𝜋𝜋+3𝜆𝜆)(𝜎𝜎−1)𝑡𝑡𝜎𝜎−2}−3𝑘𝑘(8𝜋𝜋+𝜆𝜆)𝑎𝑎0−2𝑒𝑒−2𝛼𝛼𝑡𝑡
𝜎𝜎

6𝜎𝜎𝛼𝛼 ((8𝜋𝜋+4𝜆𝜆) 𝑡𝑡2(𝜎𝜎−1)−𝜆𝜆(𝜎𝜎−1)𝑡𝑡𝜎𝜎−2)+6𝑘𝑘(8𝜋𝜋+3𝜆𝜆)𝑎𝑎0−2𝑒𝑒−2𝛼𝛼𝑡𝑡𝜎𝜎
]                                                    (23) 

Using equation (3) and (19), the Kaluza-Klein Friedmann-Robertson-Walker (FRW) type logamediate Hubble universe 
within the framework of 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity is  

𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − (𝑎𝑎02𝑒𝑒2𝛼𝛼𝑡𝑡
𝜎𝜎) { 𝑑𝑑𝑟𝑟2

1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2}                                                      (24) 

3.2.1 Cosmological Dynamics of Model II:

The following table summarizes the cosmological dynamics of Model II, showing a realistic transition from a hot, dense early 
universe to a late-time accelerating phase. It begins with a high energy density and large positive pressure, corresponding to a strong 
deceleration period (positive q). As the universe evolves, the pressure becomes negative, causing the deceleration parameter to drop 
below zero, marking the onset of cosmic acceleration. The model stabilizes with an equation of state converging to (ω ≈ 0.7)  which 
is consistent with quintessence-like dark energy and drives the rapid, continuous expansion of the scale factor.

Parameter Early-Time Behaviour t → 0+ Late-Time Behaviour t → 5 Remarks

ρ(t) Diverges to high values Stabilizes to a nearly constant 
value.

Reflects hot, dense beginning and approach to dark 
energy dominance.

p(t) Large and positive Small and negative. Transition from matter radiation dominated era to 
accelerated phase.

ω(t) Positive or fluctuating, depending on k Converges to ω = 0.7. Consistent with quintessence-like dark energy.

H(t) Low initially, then rises  σ > 1 Smooth and gradual increase. Represents intermediate expansion between pow-
er-law and exponential.

q(t) Highly positive (deceleration) Drops below zero (acceleration). Signifies realistic cosmic transition to accelerated 
expansion.

a(t) Starts small, grows slowly Increases rapidly. Continuous and accelerating growth of the Universe.

 
 

𝑞𝑞(𝑡𝑡) Highly positive (deceleration) Drops below zero 
(acceleration). 

Signifies realistic cosmic transition to accelerated 
expansion. 

𝑎𝑎(𝑡𝑡) Starts small, grows slowly Increases rapidly. Continuous and accelerating growth of the 
Universe. 

 
Fig.2 Plots of cosmological parameters Vs. time for Model II 

From figure 2, it has been observed that for this model, the energy density starts extremely high and gradually stabilizes, 

reflecting a transition from a dense early universe to a dark energy dominated phase.18 The pressure evolves from large positive 

values to small negative values, driving late-time acceleration.49 The equation of state parameter 𝜔𝜔(𝑡𝑡) shifts from radiation or 

matter-like behaviour to values close to −1, mimicking dark energy.16,37 The Hubble parameter increases with time but grows 

slower than in exponential expansion, indicating intermediate expansion scenarios.62 The deceleration parameter begins 

positive (decelerating universe) and drops below zero, signalling a transition to acceleration. Meanwhile, the scale factor grows 

slowly at first and then rapidly increases, confirming continuous and accelerated cosmic expansion.12 

3.3.   Model III: Logamediate Model 

The Hubble parameter 

𝐻𝐻(𝑡𝑡) = 𝛿𝛿𝛿𝛿 𝑙𝑙𝑙𝑙𝑙𝑙𝛽𝛽−1𝑡𝑡
𝑡𝑡     ,𝛿𝛿 > 0  and 𝛽𝛽 > 1.                                                                                                                                 (25) 

represents a logarithmic time-dependent expansion rate that captures both early and late-time dynamics of the universe. This 

form is particularly suitable for modelling a smooth transition from early time inflation to a late time accelerated phase, making 

it valuable in unified cosmological scenarios. Feature of this parametrization is that it diverges near 𝑡𝑡 → 1, mimicking an 

inflationary burst, while at late times it decays slowly, effectively reproducing a dark energy-like behaviour with the equation of 

state approaching 𝜔𝜔 ≈ −1. The logarithmic dependence introduces mild singularity-free behaviour and avoids the classical big 

bang singularity by initiating the universe from a finite 𝑎𝑎(𝑡𝑡).  Such Hubble flow models have been widely studied to bridge the 

gap between early and late-time cosmic acceleration, consistent with observational datasets including SNe Ia, CMB, and 

BAO.29,34 
 

For analysing the evolution and stability within the higher dimensional Kaluza-Klein framework, one can easily derived the scale 

factor and deceleration parameter from equation (25) as follows; 

Fig.2 Plots of cosmological parameters Vs. time for Model II
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From figure 2, it has been observed that for this model, the energy density starts extremely high and gradually stabilizes, reflecting a 
transition from a dense early universe to a dark energy dominated phase.18 The pressure evolves from large positive values to small 
negative values, driving late-time acceleration.49 The equation of state parameter ω(t) shifts from radiation or matter-like behaviour 
to values close to −1, mimicking dark energy.16,37 The Hubble parameter increases with time but grows slower than in exponential 
expansion, indicating intermediate expansion scenarios.62 The deceleration parameter begins positive (decelerating universe) and 
drops below zero, signalling a transition to acceleration. Meanwhile, the scale factor grows slowly at first and then rapidly increases, 
confirming continuous and accelerated cosmic expansion.12

3.3.   Model III: Logamediate Model

The Hubble parameter

 

 
 

3.3.   Model III: Logamediate Model 

The Hubble parameter 

𝐻𝐻(𝑡𝑡) = 𝛿𝛿𝛿𝛿 𝑙𝑙𝑙𝑙𝑙𝑙𝛽𝛽−1𝑡𝑡
𝑡𝑡     ,𝛿𝛿 > 0  and 𝛽𝛽 > 1.                                                                                                                                 (25) 

represents a logarithmic time-dependent expansion rate that captures both early and late-time dynamics of the universe. This 

form is particularly suitable for modelling a smooth transition from early time inflation to a late time accelerated phase, making 

it valuable in unified cosmological scenarios. Feature of this parametrization is that it diverges near 𝑡𝑡 → 1, mimicking an 

inflationary burst, while at late times it decays slowly, effectively reproducing a dark energy-like behaviour with the equation of 

state approaching 𝜔𝜔 ≈ −1. The logarithmic dependence introduces mild singularity-free behaviour and avoids the classical big 

bang singularity by initiating the universe from a finite 𝑎𝑎(𝑡𝑡).  Such Hubble flow models have been widely studied to bridge the 

gap between early and late-time cosmic acceleration, consistent with observational datasets including SNe Ia, CMB, and BAO 

[Nojiri ,2006 Unified, Capozziello, 2011 Extended]. 
 

For analysing the evolution and stability within the higher dimensional Kaluza-Klein framework, one can easily derived the scale 

factor and deceleration parameter from equation (25) as follows; 

  𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽     , 𝛿𝛿 > 0  and 𝛽𝛽 > 1.                                                                                                                  (26)  

 𝑞𝑞(𝑡𝑡) = −1 − [(𝛽𝛽−1)−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 ] .                                                                                                                                                          (27) 

Furthermore, we have calculated the expressions for energy density, pressure and equation of state parameter with the use of 

equations (25), (26) into (8)-(10) as follows;  

 

  𝜌𝜌(𝑡𝑡) = 1
𝐷𝐷 [ 

6𝛿𝛿𝛿𝛿
𝑡𝑡2 ((8𝜋𝜋 + 2𝜆𝜆) 𝛿𝛿𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1) − 𝜆𝜆 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3) +  6𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽(8𝜋𝜋 + 3λ)],                                 (28) 

 

𝑝𝑝(𝑡𝑡) = 1
𝐷𝐷 {

3𝛿𝛿𝛿𝛿
𝑡𝑡2 [−(8𝜋𝜋 + 3𝜆𝜆) (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3 − 2(8𝜋𝜋 + 2𝜆𝜆)𝛿𝛿𝛿𝛿  (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1)] − 3(8𝜋𝜋 + 𝜆𝜆)𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽},                         (29) 

𝜔𝜔(𝑡𝑡) = 1
2 [

(−(8𝜋𝜋+3𝜆𝜆) (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3−2(8𝜋𝜋+2𝜆𝜆)𝛿𝛿𝛿𝛿  (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1))−𝑡𝑡2(8𝜋𝜋+𝜆𝜆)𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽

((8𝜋𝜋+2𝜆𝜆) 𝛿𝛿𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1)−𝜆𝜆 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3)+ 𝑡𝑡2𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽(8𝜋𝜋+3λ)
],                                                             (30) 

 

Using equation (3) and (26), the Kaluza-Klein Friedmann Robertson Walker (FRW) type logamediate Hubble universe 
within the framework of 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity is,  

𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − (𝑒𝑒2[𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽) { 𝑑𝑑𝑟𝑟2

1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2}.                                                       (31) 

 

3.3.1 Cosmological Dynamics of Model III: 

The following table summarizes the dynamics of Model III, which describes a universe undergoing an early 

inflationary epoch followed by a stable, late-time accelerated expansion. Initially, the model experiences strong 

acceleration (deeply negative 𝑞𝑞) driven by a highly negative pressure, reflecting an inflationary phase. During this 

time, the equation of state (𝜔𝜔)is unstable and fluctuating. As the universe evolves, the Hubble parameter peaks and 

then gradually decreases, and all parameters stabilize. At late times, the energy density approaches a constant, the 

pressure remains negative, and 𝜔𝜔 converges to -1, mimicking dark energy and ensuring a sustained cosmic 

acceleration. 

 

 

represents a logarithmic time-dependent expansion rate that captures both early and late-time dynamics of the universe. This form is 
particularly suitable for modelling a smooth transition from early time inflation to a late time accelerated phase, making it valuable 
in unified cosmological scenarios. Feature of this parametrization is that it diverges near t → 1, mimicking an inflationary burst, 
while at late times it decays slowly, effectively reproducing a dark energy-like behaviour with the equation of state approaching ω ≈ 
-1. The logarithmic dependence introduces mild singularity-free behaviour and avoids the classical big bang singularity by initiating 
the universe from a finite a(t). Such Hubble flow models have been widely studied to bridge the gap between early and late-time 
cosmic acceleration, consistent with observational datasets including SNe Ia, CMB, and BAO.29,34

For analysing the evolution and stability within the higher dimensional Kaluza-Klein framework, one can easily derived the scale 
factor and deceleration parameter from equation (25) as follows;
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represents a logarithmic time-dependent expansion rate that captures both early and late-time dynamics of the universe. This 
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gap between early and late-time cosmic acceleration, consistent with observational datasets including SNe Ia, CMB, and BAO 

[Nojiri ,2006 Unified, Capozziello, 2011 Extended]. 
 

For analysing the evolution and stability within the higher dimensional Kaluza-Klein framework, one can easily derived the scale 

factor and deceleration parameter from equation (25) as follows; 

  𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽     , 𝛿𝛿 > 0  and 𝛽𝛽 > 1.                                                                                                                  (26)  

 𝑞𝑞(𝑡𝑡) = −1 − [(𝛽𝛽−1)−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
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Furthermore, we have calculated the expressions for energy density, pressure and equation of state parameter with the use of 

equations (25), (26) into (8)-(10) as follows;  

 

  𝜌𝜌(𝑡𝑡) = 1
𝐷𝐷 [ 

6𝛿𝛿𝛿𝛿
𝑡𝑡2 ((8𝜋𝜋 + 2𝜆𝜆) 𝛿𝛿𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1) − 𝜆𝜆 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3) +  6𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽(8𝜋𝜋 + 3λ)],                                 (28) 

 

𝑝𝑝(𝑡𝑡) = 1
𝐷𝐷 {

3𝛿𝛿𝛿𝛿
𝑡𝑡2 [−(8𝜋𝜋 + 3𝜆𝜆) (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3 − 2(8𝜋𝜋 + 2𝜆𝜆)𝛿𝛿𝛿𝛿  (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1)] − 3(8𝜋𝜋 + 𝜆𝜆)𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽},                         (29) 

𝜔𝜔(𝑡𝑡) = 1
2 [

(−(8𝜋𝜋+3𝜆𝜆) (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3−2(8𝜋𝜋+2𝜆𝜆)𝛿𝛿𝛿𝛿  (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1))−𝑡𝑡2(8𝜋𝜋+𝜆𝜆)𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽

((8𝜋𝜋+2𝜆𝜆) 𝛿𝛿𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1)−𝜆𝜆 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3)+ 𝑡𝑡2𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽(8𝜋𝜋+3λ)
],                                                             (30) 

 

Using equation (3) and (26), the Kaluza-Klein Friedmann Robertson Walker (FRW) type logamediate Hubble universe 
within the framework of 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity is,  

𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − (𝑒𝑒2[𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽) { 𝑑𝑑𝑟𝑟2

1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2}.                                                       (31) 

 

3.3.1 Cosmological Dynamics of Model III: 

The following table summarizes the dynamics of Model III, which describes a universe undergoing an early 

inflationary epoch followed by a stable, late-time accelerated expansion. Initially, the model experiences strong 

acceleration (deeply negative 𝑞𝑞) driven by a highly negative pressure, reflecting an inflationary phase. During this 

time, the equation of state (𝜔𝜔)is unstable and fluctuating. As the universe evolves, the Hubble parameter peaks and 

then gradually decreases, and all parameters stabilize. At late times, the energy density approaches a constant, the 

pressure remains negative, and 𝜔𝜔 converges to -1, mimicking dark energy and ensuring a sustained cosmic 

acceleration. 

 

 

Furthermore, we have calculated the expressions for energy density, pressure and equation of state parameter with the use of equations 
(25), (26) into (8)-(10) as follows;

 

 
 

3.3.   Model III: Logamediate Model 

The Hubble parameter 

𝐻𝐻(𝑡𝑡) = 𝛿𝛿𝛿𝛿 𝑙𝑙𝑙𝑙𝑙𝑙𝛽𝛽−1𝑡𝑡
𝑡𝑡     ,𝛿𝛿 > 0  and 𝛽𝛽 > 1.                                                                                                                                 (25) 

represents a logarithmic time-dependent expansion rate that captures both early and late-time dynamics of the universe. This 

form is particularly suitable for modelling a smooth transition from early time inflation to a late time accelerated phase, making 

it valuable in unified cosmological scenarios. Feature of this parametrization is that it diverges near 𝑡𝑡 → 1, mimicking an 

inflationary burst, while at late times it decays slowly, effectively reproducing a dark energy-like behaviour with the equation of 

state approaching 𝜔𝜔 ≈ −1. The logarithmic dependence introduces mild singularity-free behaviour and avoids the classical big 

bang singularity by initiating the universe from a finite 𝑎𝑎(𝑡𝑡).  Such Hubble flow models have been widely studied to bridge the 

gap between early and late-time cosmic acceleration, consistent with observational datasets including SNe Ia, CMB, and BAO 

[Nojiri ,2006 Unified, Capozziello, 2011 Extended]. 
 

For analysing the evolution and stability within the higher dimensional Kaluza-Klein framework, one can easily derived the scale 

factor and deceleration parameter from equation (25) as follows; 

  𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽     , 𝛿𝛿 > 0  and 𝛽𝛽 > 1.                                                                                                                  (26)  

 𝑞𝑞(𝑡𝑡) = −1 − [(𝛽𝛽−1)−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 ] .                                                                                                                                                          (27) 

Furthermore, we have calculated the expressions for energy density, pressure and equation of state parameter with the use of 

equations (25), (26) into (8)-(10) as follows;  

 

  𝜌𝜌(𝑡𝑡) = 1
𝐷𝐷 [ 

6𝛿𝛿𝛿𝛿
𝑡𝑡2 ((8𝜋𝜋 + 2𝜆𝜆) 𝛿𝛿𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1) − 𝜆𝜆 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3) +  6𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽(8𝜋𝜋 + 3λ)],                                 (28) 

 

𝑝𝑝(𝑡𝑡) = 1
𝐷𝐷 {

3𝛿𝛿𝛿𝛿
𝑡𝑡2 [−(8𝜋𝜋 + 3𝜆𝜆) (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3 − 2(8𝜋𝜋 + 2𝜆𝜆)𝛿𝛿𝛿𝛿  (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1)] − 3(8𝜋𝜋 + 𝜆𝜆)𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽},                         (29) 

𝜔𝜔(𝑡𝑡) = 1
2 [

(−(8𝜋𝜋+3𝜆𝜆) (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3−2(8𝜋𝜋+2𝜆𝜆)𝛿𝛿𝛿𝛿  (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1))−𝑡𝑡2(8𝜋𝜋+𝜆𝜆)𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽

((8𝜋𝜋+2𝜆𝜆) 𝛿𝛿𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1)−𝜆𝜆 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3)+ 𝑡𝑡2𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽(8𝜋𝜋+3λ)
],                                                             (30) 

 

Using equation (3) and (26), the Kaluza-Klein Friedmann Robertson Walker (FRW) type logamediate Hubble universe 
within the framework of 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity is,  

𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − (𝑒𝑒2[𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽) { 𝑑𝑑𝑟𝑟2

1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2}.                                                       (31) 

 

3.3.1 Cosmological Dynamics of Model III: 

The following table summarizes the dynamics of Model III, which describes a universe undergoing an early 

inflationary epoch followed by a stable, late-time accelerated expansion. Initially, the model experiences strong 

acceleration (deeply negative 𝑞𝑞) driven by a highly negative pressure, reflecting an inflationary phase. During this 

time, the equation of state (𝜔𝜔)is unstable and fluctuating. As the universe evolves, the Hubble parameter peaks and 

then gradually decreases, and all parameters stabilize. At late times, the energy density approaches a constant, the 

pressure remains negative, and 𝜔𝜔 converges to -1, mimicking dark energy and ensuring a sustained cosmic 

acceleration. 

 

 

        
                   

Using equation (3) and (26), the Kaluza-Klein Friedmann Robertson Walker (FRW) type logamediate Hubble universe within the 
framework of f(R,T) gravity is,

 

 
 

3.3.   Model III: Logamediate Model 

The Hubble parameter 

𝐻𝐻(𝑡𝑡) = 𝛿𝛿𝛿𝛿 𝑙𝑙𝑙𝑙𝑙𝑙𝛽𝛽−1𝑡𝑡
𝑡𝑡     ,𝛿𝛿 > 0  and 𝛽𝛽 > 1.                                                                                                                                 (25) 

represents a logarithmic time-dependent expansion rate that captures both early and late-time dynamics of the universe. This 

form is particularly suitable for modelling a smooth transition from early time inflation to a late time accelerated phase, making 

it valuable in unified cosmological scenarios. Feature of this parametrization is that it diverges near 𝑡𝑡 → 1, mimicking an 

inflationary burst, while at late times it decays slowly, effectively reproducing a dark energy-like behaviour with the equation of 

state approaching 𝜔𝜔 ≈ −1. The logarithmic dependence introduces mild singularity-free behaviour and avoids the classical big 

bang singularity by initiating the universe from a finite 𝑎𝑎(𝑡𝑡).  Such Hubble flow models have been widely studied to bridge the 

gap between early and late-time cosmic acceleration, consistent with observational datasets including SNe Ia, CMB, and BAO 

[Nojiri ,2006 Unified, Capozziello, 2011 Extended]. 
 

For analysing the evolution and stability within the higher dimensional Kaluza-Klein framework, one can easily derived the scale 

factor and deceleration parameter from equation (25) as follows; 

  𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽     , 𝛿𝛿 > 0  and 𝛽𝛽 > 1.                                                                                                                  (26)  

 𝑞𝑞(𝑡𝑡) = −1 − [(𝛽𝛽−1)−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 ] .                                                                                                                                                          (27) 

Furthermore, we have calculated the expressions for energy density, pressure and equation of state parameter with the use of 

equations (25), (26) into (8)-(10) as follows;  

 

  𝜌𝜌(𝑡𝑡) = 1
𝐷𝐷 [ 

6𝛿𝛿𝛿𝛿
𝑡𝑡2 ((8𝜋𝜋 + 2𝜆𝜆) 𝛿𝛿𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1) − 𝜆𝜆 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3) +  6𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽(8𝜋𝜋 + 3λ)],                                 (28) 

 

𝑝𝑝(𝑡𝑡) = 1
𝐷𝐷 {

3𝛿𝛿𝛿𝛿
𝑡𝑡2 [−(8𝜋𝜋 + 3𝜆𝜆) (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3 − 2(8𝜋𝜋 + 2𝜆𝜆)𝛿𝛿𝛿𝛿  (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1)] − 3(8𝜋𝜋 + 𝜆𝜆)𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽},                         (29) 

𝜔𝜔(𝑡𝑡) = 1
2 [

(−(8𝜋𝜋+3𝜆𝜆) (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3−2(8𝜋𝜋+2𝜆𝜆)𝛿𝛿𝛿𝛿  (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1))−𝑡𝑡2(8𝜋𝜋+𝜆𝜆)𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽

((8𝜋𝜋+2𝜆𝜆) 𝛿𝛿𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2(𝛽𝛽−1)−𝜆𝜆 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝛽𝛽2−4𝛽𝛽+3)+ 𝑡𝑡2𝑘𝑘𝑒𝑒−2𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽(8𝜋𝜋+3λ)
],                                                             (30) 

 

Using equation (3) and (26), the Kaluza-Klein Friedmann Robertson Walker (FRW) type logamediate Hubble universe 
within the framework of 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity is,  

𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − (𝑒𝑒2[𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡)𝛽𝛽) { 𝑑𝑑𝑟𝑟2

1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2}.                                                       (31) 

 

3.3.1 Cosmological Dynamics of Model III: 

The following table summarizes the dynamics of Model III, which describes a universe undergoing an early 

inflationary epoch followed by a stable, late-time accelerated expansion. Initially, the model experiences strong 

acceleration (deeply negative 𝑞𝑞) driven by a highly negative pressure, reflecting an inflationary phase. During this 

time, the equation of state (𝜔𝜔)is unstable and fluctuating. As the universe evolves, the Hubble parameter peaks and 

then gradually decreases, and all parameters stabilize. At late times, the energy density approaches a constant, the 

pressure remains negative, and 𝜔𝜔 converges to -1, mimicking dark energy and ensuring a sustained cosmic 

acceleration. 

 

 

3.3.1 Cosmological Dynamics of Model III:

The following table summarizes the dynamics of Model III, which describes a universe undergoing an early inflationary epoch 
followed by a stable, late-time accelerated expansion. Initially, the model experiences strong acceleration (deeply negative q) driven 
by a highly negative pressure, reflecting an inflationary phase. During this time, the equation of state (ω)is unstable and fluctuating. 
As the universe evolves, the Hubble parameter peaks and then gradually decreases, and all parameters stabilize. At late times, the 
energy density approaches a constant, the pressure remains negative, and ω converges to -1, mimicking dark energy and ensuring a 
sustained cosmic acceleration.

Parameter Early-Time Behaviour (t → 1+ ) Late-Time Behaviour (t → 5) Remark

ρ(t) Very high (especially for closed universe), 
diverges as (t → 1)

Decreases rapidly and stabilizes near a 
constant value

Reflects hot, dense initial state; stabilizes 
to a cosmological constant-like behaviour 
later
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p(t) Highly negative for
(k = 0)indicating strong inflation; varies 
with curvature

Approaches a small negative constant, 
signifying late-time acceleration

Negative pressure drives early inflation 
and sustained late accelerated expansion

ω(t) Strong fluctuations and divergences for (k 
= 0); smooth but high for (k = ±1)

Converges toward 
(ω ≈ -1), mimicking dark energy

Transition from unstable early phase to 
stable dark energy-dominated epoch

H(t) Increases to a peak value, modelling an 
initial inflationary phase

Gradually decreases, indicating slowing 
expansion rate

Captures the expected inflation peak and 
subsequent slower expansion

q(t) Deeply negative (strong acceleration), 
especially for flat case

Less negative but still 
(q < 0), indicating sustained accelera-
tion

Universe undergoes early rapid accel-
eration followed by milder late-time 
acceleration

a(t) Starts from a finite value and grows 
gradually

Increases smoothly, confirming contin-
uous expansion of the Universe

Consistent with non-singular start and 
continuous cosmic expansion

 
 

  

𝑎𝑎(𝑡𝑡) 

Starts from a finite value and 
grows gradually 

Increases smoothly, 
confirming continuous 
expansion of the Universe 
  

Consistent with non-singular start and 
continuous cosmic expansion 

 

 

Fig.3: Cosmological parameters plots Vs time for Model III  

From figure 3, it is observed that logarithmic Hubble parameter describes a logamediate expansion, characterized by a growth 

rate that is slower than exponential (de Sitter) yet faster than power-law expansion. The model starts with a small value of 

𝐻𝐻(𝑡𝑡), increases gradually, peaks, and then slows down reflecting a physically meaningful expansion history. The corresponding 

scale factor increases steadily but sub-exponentially, making this framework highly compatible with observed cosmic 

acceleration.62,29 The deceleration parameter 𝑞𝑞(𝑡𝑡) exhibits a crucial feature: it is initially positive, indicating a decelerated 

phase, but transitions to negative values, signalling   the onset of cosmic acceleration. This aligns well with current 

observational evidence that our universe underwent a transition from deceleration to acceleration in its recent past. From a 

theoretical standpoint, this form of 𝐻𝐻(𝑡𝑡) offers several advantages: It supports a singularity-free origin (depending on 

parameters 𝛿𝛿 and 𝛽𝛽 avoiding the classical Big Bang singularity. It provides a natural mechanism to drive late-time acceleration 

without invoking exotic fields. For specific values, such as 𝛿𝛿 = 2.0 and 𝛽𝛽 = 2.5 5, it mimics the behaviour of dark energy, 

making it viable within the framework of modified gravity and scalar field cosmology. Thus, the model captures a realistic and 

observationally consistent cosmic history from early deceleration to late-time acceleration while remaining analytically 

tractable and physically interpretable. This behaviour is consistent with an early inflation-like epoch followed by a late-time 

accelerated expansion in agreement with observations of cosmic evolution 

3.4.    Model IV: Exponential decay model 

This functional form  

Fig.3: Cosmological parameters plots Vs time for Model III

From figure 3, it is observed that logarithmic Hubble parameter describes a logamediate expansion, characterized by a growth rate 
that is slower than exponential (de Sitter) yet faster than power-law expansion. The model starts with a small value of H(t), increases 
gradually, peaks, and then slows down reflecting a physically meaningful expansion history. The corresponding scale factor increases 
steadily but sub-exponentially, making this framework highly compatible with observed cosmic acceleration.62,29 The deceleration 
parameter q(t) exhibits a crucial feature: it is initially positive, indicating a decelerated phase, but transitions to negative values, 
signalling the onset of cosmic acceleration. This aligns well with current observational evidence that our universe underwent a 
transition from deceleration to acceleration in its recent past. From a theoretical standpoint, this form of H(t) offers several advantages: 
It supports a singularity-free origin (depending on parameters δ and β avoiding the classical Big Bang singularity. It provides a 
natural mechanism to drive late-time acceleration without invoking exotic fields. For specific values, such as δ = 2.0 and β = 2.55, it 
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scale factor increases steadily but sub-exponentially, making this framework highly compatible with observed cosmic 

acceleration [Barrow 2006 Logamediate, Nojiri 2006 Unified]. The deceleration parameter 𝑞𝑞(𝑡𝑡) exhibits a crucial feature: 

it is initially positive, indicating a decelerated phase, but transitions to negative values, signalling   the onset of cosmic 

acceleration. This aligns well with current observational evidence that our universe underwent a transition from deceleration 

to acceleration in its recent past. From a theoretical standpoint, this form of 𝐻𝐻(𝑡𝑡) offers several advantages: It supports a 

singularity-free origin (depending on parameters 𝛿𝛿 and 𝛽𝛽 avoiding the classical Big Bang singularity. It provides a natural 

mechanism to drive late-time acceleration without invoking exotic fields. For specific values, such as 𝛿𝛿 = 2.0 and 𝛽𝛽 = 2.5  
5, it mimics the behaviour of dark energy, making it viable within the framework of modified gravity and scalar field cosmology. 

Thus, the model captures a realistic and observationally consistent cosmic history from early deceleration to late-time 

acceleration while remaining analytically tractable and physically interpretable. This behaviour is consistent with an early 

inflation-like epoch followed by a late-time accelerated expansion in agreement with observations of cosmic evolution 

3.4.    Model IV: Exponential decay model 

This functional form  
 𝐻𝐻(𝑡𝑡) = 𝐻𝐻0 −

𝐻𝐻1
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has been explored in the context of late-time cosmology and dark energy reconstruction [Nojiri et al., Phys. Rept. 505, 2011, 
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dominance of the exponential decay term  𝐻𝐻1
𝑒𝑒𝜉𝜉𝜉𝜉, but it asymptotically    approaches a constant value 𝐻𝐻0 , mimicking a de Sitter-

like expansion.  This parameter is ideal for unifying early and late cosmological behaviour, and consistent with supernovae and 

CMB observations. 
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3.4.1 Cosmological Dynamics of Model IV: 

The cosmological model driven by  𝐻𝐻(𝑡𝑡) = 𝐻𝐻0 −𝐻𝐻1
𝑒𝑒𝜉𝜉𝜉𝜉    demonstrates a smooth transition from curvature-sensitive early 

dynamics to a universal accelerated expansion. Late-time convergence across all models supports a de Sitter like 

future, consistent with current observations of the universe's accelerated expansion. The following table describes 

the dynamics of Model IV, which undergoes a clear transition from a decelerating, curvature-dependent early phase 

to a stable, universal accelerated expansion. The model begins with strong deceleration (𝑞𝑞 >  0), but as it evolves, 

the pressure becomes negative (𝑝𝑝 ≈ −3), and the Hubble parameter rises to a constant value (𝐻𝐻0 ). Consequently, 

the deceleration parameter asymptotes to (𝑞𝑞 ≈ −1), confirming a late-time de Sitter-like phase where the scale 

factor grows exponentially, regardless of the initial spatial curvature. 

Parameter Early-Time Behaviour Late-Time Behaviour Remarks 

𝜌𝜌(𝑡𝑡) Varies by curvature; open universe 
starts highest. All converge to 𝜌𝜌 ≈ 2 

Universe approaches constant energy 
density. 

𝑝𝑝(𝑡𝑡) Positive near zero initially for closed 
and open universes. All settle to 𝑝𝑝 ≈ −3 

Indicates transition to dark energy-like 
negative pressure. 

𝜔𝜔(𝑡𝑡) Highly sensitive initially; spikes in 
open model. Converges to 𝜔𝜔 ≈ 2 

Behaves like cosmological constant in 
the far future. 

𝑎𝑎(𝑡𝑡) Slow rise early on; closed model 
grows fastest. Exponential-like increase Reflects accelerated cosmic expansion. 

𝑞𝑞(𝑡𝑡) Strong deceleration or diverging 
behaviour at early times. All asymptote to 𝑞𝑞 ≈ −1 

Confirms transition to accelerated 
expansion (de Sitter phase). 

𝐻𝐻(𝑡𝑡) Rapid rise from low values. Stabilizes to constant 𝐻𝐻0 
Indicates approach to steady-state 
expansion. 

 

 
 

Fig.4: Cosmological parameters plots Vs time for Model IV  

 demonstrates a smooth transition from curvature-sensitive early dynamics to a 
universal accelerated expansion. Late-time convergence across all models supports a de Sitter like future, consistent with current 
observations of the universe’s accelerated expansion. The following table describes the dynamics of Model IV, which undergoes a 
clear transition from a decelerating, curvature-dependent early phase to a stable, universal accelerated expansion. The model begins 
with strong deceleration (q > 0), but as it evolves, the pressure becomes negative (p ≈ -3), and the Hubble parameter rises to a constant 
value (H0). Consequently, the deceleration parameter asymptotes to (q ≈ -1), confirming a late-time de Sitter-like phase where the 
scale factor grows exponentially, regardless of the initial spatial curvature.

Parameter Early-Time Behaviour Late-Time Behaviour Remarks

ρ(t) Varies by curvature; open universe starts highest. All converge to ρ ≈ 2 Universe approaches constant energy density.

p(t) Positive near zero initially for closed and open 
universes.

All settle to p ≈ -3 Indicates transition to dark energy-like negative 
pressure.

ω(t) Highly sensitive initially; spikes in open model. Converges to ω ≈ 2 Behaves like cosmological constant in the far 
future.

a(t) Slow rise early on; closed model grows fastest. Exponential-like increase Reflects accelerated cosmic expansion.

q(t) Strong deceleration or diverging behaviour at 
early times.

All asymptote to q ≈ -1 Confirms transition to accelerated expansion 
(de Sitter phase).

H(t) Rapid rise from low values. Stabilizes to constant H0 Indicates approach to steady-state expansion.
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𝑝𝑝(𝑡𝑡) Positive near zero initially for closed 
and open universes. All settle to 𝑝𝑝 ≈ −3 Indicates transition to dark energy-like 

negative pressure. 

𝜔𝜔(𝑡𝑡) Highly sensitive initially; spikes in 
open model. Converges to 𝜔𝜔 ≈ 2 

Behaves like cosmological constant in 
the far future. 

𝑎𝑎(𝑡𝑡) Slow rise early on; closed model 
grows fastest. Exponential-like increase Reflects accelerated cosmic expansion. 

𝑞𝑞(𝑡𝑡) Strong deceleration or diverging 
behaviour at early times. All asymptote to 𝑞𝑞 ≈ −1 

Confirms transition to accelerated 
expansion (de Sitter phase). 

𝐻𝐻(𝑡𝑡) Rapid rise from low values. Stabilizes to constant 𝐻𝐻0 
Indicates approach to steady-state 
expansion. 
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From figure 4, it is observed that, the plot of 𝜌𝜌(𝑡𝑡) typically monotonically decreases with cosmic time 𝑡𝑡, which is a physically 

realistic behavior. The decay rate depends on the logarithmic term, allowing for a smooth early dominance (high energy) and 

decay into a lower-energy late-time phase, consistent with observations of a transitioning universe.15 The pressure 𝑝𝑝(𝑡𝑡)may start 

positive (decelerating era) and transition to negative values, indicating late-time acceleration driven by a dark energy component. 

The logarithmic term's behaviour can generate such a dynamic EoS fluid. This is analogous to scalar field models where pressure 

evolves from stiff matter to vacuum-dominated phases.7 In the case of this logarithmic Hubble model, the plot typically shows 

that 𝑞𝑞(𝑡𝑡)  evolves from positive to negative values, indicating a transition from a decelerating universe to an accelerating one. 

This is compatible with the observational discovery of cosmic acceleration using Type Ia supernovae data.16 The transition 

behaviour also supports the idea of dynamical dark energy scenarios. For this model,𝑎𝑎(𝑡𝑡) indicating a faster-than-power-law 

expansion at late times, which mimics accelerated cosmic expansion. This type of behaviour is similar to inflationary models 

and late-time dark energy dominance, where the expansion accelerates without bound.36 In this exponential decay Hubble 

model, the evolution of 𝜔𝜔(𝑡𝑡)shows a transition from dust-like or stiff matter behavior to quintessence or phantom-like behaviour 
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From figure 4, it is observed that, the plot of ρ(t) typically monotonically decreases with cosmic time t, which is a physically realistic 
behavior. The decay rate depends on the logarithmic term, allowing for a smooth early dominance (high energy) and decay into a lower-
energy late-time phase, consistent with observations of a transitioning universe.15 The pressure p(t) may start positive (decelerating 
era) and transition to negative values, indicating late-time acceleration driven by a dark energy component. The logarithmic term’s 
behaviour can generate such a dynamic EoS fluid. This is analogous to scalar field models where pressure evolves from stiff matter to 
vacuum-dominated phases.7 In the case of this logarithmic Hubble model, the plot typically shows that q(t) evolves from positive to 
negative values, indicating a transition from a decelerating universe to an accelerating one. This is compatible with the observational 
discovery of cosmic acceleration using Type Ia supernovae data.16 The transition behaviour also supports the idea of dynamical dark 
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accelerates without bound.36 In this exponential decay Hubble model, the evolution of ω(t) shows a transition from dust-like or 
stiff matter behavior to quintessence or phantom-like behaviour ω < -1, depending on the values of δ and γ. This is consistent with 
phantom dark energy models that drive the universe into super-accelerated expansion phases.33

3.5. Model V: Emergent tanh expansion model

The Hubble parameter is taken as a hyperbolic tangent function
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which captures a smooth transition from an early-time quasi-static or decelerated phase to a late-time accelerated expansion, 

consistent with emergent universe scenarios and avoiding the initial singularity problem [Ellis and Maartens, 2004; Mukherjee 

et al., 2006; Debnath, 2008; Paul and Ghose, 2010]. This form allows the universe to begin from a static or nearly-static state, 

evolve through a decelerated expansion era, and asymptotically approach a de Sitter phase in the far future, without encountering 

a Big Bang-type singularity. The scale factor associated with this Hubble parameter reflects a bouncing-like or emergent 

behaviour, where the universe eternally exists with a finite size and gradually enters into a phase of accelerated expansion. In the 

framework of modified gravity, particularly within 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity, where 𝑅𝑅 is the Ricci scalar and 𝑇𝑇  is the trace of the energy-
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content, the model exhibits a rich phenomenology that can effectively explain cosmic acceleration, dark energy behaviour, and 

late-time modifications to General Relativity without relying on exotic scalar fields or fine-tuned cosmological constants [Harko 
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Such parametrizations have also been shown to yield viable cosmological models that satisfy observational constraints from 

Type Ia supernovae, baryon acoustic oscillations, and the cosmic microwave background [Amendola and Tsujikawa, 2010]. 

Moreover, the hyperbolic tangent form introduces a natural time scale 𝑡𝑡0 which governs the onset of acceleration and offers a 

framework to study transitions in the equation of state parameter and cosmographic diagnostics in a unified way [Zhang et al., 

2019]. 

For analysing the evolution and stability within the higher-dimensional Kaluza-Klein framework, one can easily derived the scale 
factor and deceleration parameter from equation (39) as follows; 

𝑎𝑎(𝑡𝑡) = 𝑎𝑎0 cosh𝜓𝜓 ( 𝑡𝑡
𝑡𝑡0
)     .                                                                                                                                                     (40)  

𝑞𝑞(𝑡𝑡) = −1 − 1
𝜓𝜓𝑡𝑡0𝑠𝑠𝑠𝑠𝑠𝑠ℎ2(

𝑡𝑡
𝑡𝑡0
)
                                                                                                                                        (41) 

 

Furthermore, we have calculated the expressions for energy density, pressure and equation of state parameter with the use of 

equations (39), (40) into (8)-(10) as follows 

𝜌𝜌(𝑡𝑡) = 1
𝐷𝐷 [

−6𝜓𝜓𝜓𝜓
𝑡𝑡0

sech2 ( 𝑡𝑡
𝑡𝑡0
) + 6𝜓𝜓2(8𝜋𝜋 − 2𝜆𝜆) tanh2 ( 𝑡𝑡

𝑡𝑡0
) + 6𝑘𝑘(8𝜋𝜋 + 3𝜆𝜆)𝑎𝑎0 

−2 sech2𝜓𝜓 ( 𝑡𝑡
𝑡𝑡0
)].                               (42 

which captures a smooth transition from an early-time quasi-static or decelerated phase to a late-time accelerated expansion, consistent 
with emergent universe scenarios and avoiding the initial singularity problem.19-22 This form allows the universe to begin from a static 
or nearly-static state, evolve through a decelerated expansion era, and asymptotically approach a de Sitter phase in the far future, 
without encountering a Big Bang-type singularity. The scale factor associated with this Hubble parameter reflects a bouncing-like or 
emergent behaviour, where the universe eternally exists with a finite size and gradually enters into a phase of accelerated expansion. 
In the framework of modified gravity, particularly within f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-
momentum tensor, this choice of H(t) becomes highly relevant. By incorporating the coupling between curvature and matter content, 
the model exhibits a rich phenomenology that can effectively explain cosmic acceleration, dark energy behaviour, and late-time 
modifications to General Relativity without relying on exotic scalar fields or fine-tuned cosmological constants.1,23,24

Such parametrizations have also been shown to yield viable cosmological models that satisfy observational constraints from Type Ia 
supernovae, baryon acoustic oscillations, and the cosmic microwave background.25 Moreover, the hyperbolic tangent form introduces 
a natural time scale t0 which governs the onset of acceleration and offers a framework to study transitions in the equation of state 
parameter and cosmographic diagnostics in a unified way.26

For analysing the evolution and stability within the higher-dimensional Kaluza-Klein framework, one can easily derived the scale 
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factor and deceleration parameter from equation (39) as follows;
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Furthermore, we have calculated the expressions for energy density, pressure and equation of state parameter with the use of equations 
(39), (40) into (8)-(10) as follows
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𝑡𝑡0
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𝑡𝑡0
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𝑡𝑡0
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𝑝𝑝(𝑡𝑡) = 1
𝐷𝐷 [−(8𝜋𝜋 + 3𝜆𝜆) 3𝜓𝜓

𝑡𝑡0
sech2 ( 𝑡𝑡

𝑡𝑡0
) − 6𝜓𝜓2(8𝜋𝜋 + 2𝜆𝜆) tanh2 ( 𝑡𝑡

𝑡𝑡0
) − 3𝑘𝑘(8𝜋𝜋 + 𝜆𝜆)𝑎𝑎0 

−2 sech2𝜓𝜓 ( 𝑡𝑡
𝑡𝑡0
)].                (43) 

𝜔𝜔(𝑡𝑡) = 1
2 [

−𝜓𝜓(8𝜋𝜋+3𝜆𝜆) sech2( 𝑡𝑡
𝑡𝑡0
)−2𝑡𝑡0𝜓𝜓2(8𝜋𝜋+2𝜆𝜆) tanh2( 𝑡𝑡

𝑡𝑡0
)−𝑘𝑘𝑡𝑡0(8𝜋𝜋+𝜆𝜆)𝑎𝑎0 −2 sech2𝜓𝜓(

𝑡𝑡
𝑡𝑡0
)

−𝜓𝜓𝜓𝜓 sech2( 𝑡𝑡
𝑡𝑡0
)+𝑡𝑡0𝜓𝜓2(8𝜋𝜋−2𝜆𝜆) tanh2( 𝑡𝑡

𝑡𝑡0
)+𝑘𝑘𝑡𝑡0(8𝜋𝜋+3𝜆𝜆)𝑎𝑎0 

−2 sech2𝜓𝜓( 𝑡𝑡
𝑡𝑡0
)

] ,                                      (44) 

Using equation (3) and (40), the Kaluza-Klein Friedmann-Robertson-Walker (FRW) type emergent tanh Hubble universe 

within the framework of 𝑓𝑓(𝑅𝑅,𝑇𝑇) gravity is  
 

𝑑𝑑𝑠𝑠2 =  𝑑𝑑𝑡𝑡2 − 𝑎𝑎0 
2 cosh2𝜓𝜓 ( 𝑡𝑡

𝑡𝑡0
) { 𝑑𝑑𝑟𝑟2

1−𝑘𝑘𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜑𝜑2) + (1 − 𝑘𝑘𝑟𝑟2)𝑑𝑑𝜙𝜙2}                                                     (45) 
 

3.5.1 Cosmological Dynamics for Model V: 

This model, which includes late-time acceleration, matter-radiation transition, and early-time inflation, is a realistic 

cosmic scenario shows strong behaviour under changes in curvature as well. These findings characterize a cosmos 

that smoothly shifts from deceleration to acceleration, making it appropriate for models such as quasi-de Sitter 

cosmology or emergent cosmology. The following table summarizes the dynamics of Model V, illustrating a 

universe that begins in a strongly accelerating, inflationary-like phase (strongly negative 𝑞𝑞). The model then 

smoothly transitions, with the Hubble parameter (𝐻𝐻) and energy density (𝜌𝜌) stabilizing to constant values. At late 

Using equation (3) and (40), the Kaluza-Klein Friedmann-Robertson-Walker (FRW) type emergent tanh Hubble universe within the 
framework of f(R,T) gravity is
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3.5.1 Cosmological Dynamics for Model V: 

This model, which includes late-time acceleration, matter-radiation transition, and early-time inflation, is a realistic 

cosmic scenario shows strong behaviour under changes in curvature as well. These findings characterize a cosmos 

that smoothly shifts from deceleration to acceleration, making it appropriate for models such as quasi-de Sitter 

cosmology or emergent cosmology. The following table summarizes the dynamics of Model V, illustrating a 

universe that begins in a strongly accelerating, inflationary-like phase (strongly negative 𝑞𝑞). The model then 

smoothly transitions, with the Hubble parameter (𝐻𝐻) and energy density (𝜌𝜌) stabilizing to constant values. At late 
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early inflationary epoch into a sustained, late-time accelerating phase, consistent with a de Sitter or ΛCDM-like dark energy universe.
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p(t) Decreases from high to -1 p → -1 Dark energy pressure
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Fig. 5:  Plots of cosmological Parameters Vs, time for Model V 
From figure 5, it is observed that, the scale factor 𝑎𝑎(𝑡𝑡) = 𝑎𝑎0 cosh𝜓𝜓 ( 𝑡𝑡𝑡𝑡0), which grows monotonically with time, indicating an 

expanding universe. The scale factor increases monotonically, showing an expanding universe. The growth becomes exponential-

like at late times, consistent with accelerating expansion (where  𝜓𝜓 = 1.5,   𝑡𝑡0 = 2.0  and 𝑎𝑎0 = 1.0  ). The plot displays the 

deceleration parameter 𝑞𝑞(𝑡𝑡), which starts from a large negative value and asymptotically approaches 𝑞𝑞 = −1, characteristic of 

accelerated expansion similar to a de Sitter phase. Initially, 𝑞𝑞(𝑡𝑡) > 0, indicating decelerated expansion. As time increases, 

𝑞𝑞(𝑡𝑡)becomes negative and approaches −1, reflecting a smooth transition to cosmic acceleration. The plot of the Hubble 

parameter 𝐻𝐻(𝑡𝑡) = 𝜓𝜓 tanh ( 𝑡𝑡𝑡𝑡0): It starts near 0 at early times and asymptotically approaches 𝛼𝛼 as  𝑡𝑡 → 0 to 𝑡𝑡 → ∞  indicating a 

transition to a de Sitter-like accelerated expansion phase. This behaviour reflects a transition from a decelerated phase to a late-

time accelerated (quasi-de Sitter) phase. The Hubble parameter starts near zero and increases with time.  

4. Comparative analysis of Five Hubble models 

Having analysed each model individually, we now compare their collective behaviour to understand their distinct cosmological 
implications. Figure 6 provides an overlay of all five models, while the following table summarizes their key evolutionary traits. 

Model Early Behaviour Late-Time Behaviour Physical Insight 
Model I Rapid decay in 𝜌𝜌, 𝑝𝑝 ; modest acceleration. Stabilizes to DE-like expansion. Viable model with early inflation 

Fig. 5:  Plots of cosmological Parameters Vs, time for Model V
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4. Comparative analysis of Five Hubble models 

Having analysed each model individually, we now compare their collective behaviour to understand their distinct cosmological 
implications. Figure 6 provides an overlay of all five models, while the following table summarizes their key evolutionary traits. 

Model Early Behaviour Late-Time Behaviour Physical Insight 
Model I Rapid decay in 𝜌𝜌, 𝑝𝑝 ; modest acceleration. Stabilizes to DE-like expansion. Viable model with early inflation 

: It starts near 0 at early 
times and asymptotically approaches α as  t → 0 to t → ∞ indicating a transition to a de Sitter-like accelerated expansion phase. This 
behaviour reflects a transition from a decelerated phase to a late-time accelerated (quasi-de Sitter) phase. The Hubble parameter 
starts near zero and increases with time.

4. Comparative analysis of Five Hubble models

Having analysed each model individually, we now compare their collective behaviour to understand their distinct cosmological 
implications. Figure 6 provides an overlay of all five models, while the following table summarizes their key evolutionary traits.

Model Early Behaviour Late-Time Behaviour Physical Insight
Model I Rapid decay in ρ, p ; modest acceler-

ation.
Stabilizes to DE-like expansion. Viable model with early inflation

Model II Divergent ω(t), strong phantom traits. Stabilizes, moderate expansion. Points to an exotic early phase, possibly a 
bounce.

Model III Smooth evolution in ρ,p and q. Tracks ΛCDM behaviour. Appears balanced and realistic kinematically.
Model IV Explosive growth in a(t), high H(t) Super-accelerated. Represents a phantom or inflation-like scenario.
Model V Singular early behaviour, quick 

damping.
Approaches steady DE phase. Shows transient bounce-like characteristics.

As the table and plots show, all models eventually support accelerated cosmic expansion, but their early time behaviours differ 
significantly. We now analyse the specific parameters from Figure 6 in detail.

4.1. Cosmological Analysis of Figure 6:
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Fig.6:  Plots of cosmological Parameters of five Hubble Models Vs. time 

Energy Density 𝝆𝝆(𝒕𝒕) and Pressure 𝒑𝒑(𝒕𝒕): All models show energy density 𝜌𝜌(𝑡𝑡) starting at a very high value and decaying 

rapidly, converging to a small, positive constant at late times. This aligns with a hot, dense Big Bang-like origin followed by 

cosmic dilution and a late-time dark energy dominance.32,40 The pressure 𝑝𝑝(𝑡𝑡) for all models diverges negatively at 𝑡𝑡 → 0 and 

asymptotically approaches a negative constant value.33,42 This negative pressure is the necessary driver for the late-time 

accelerated expansion.  Equation of State 𝝎𝝎(𝒕𝒕): The EoS parameter shows significant variation at early times, with Model II in 

particular exhibiting strong phantom behaviour (𝜔𝜔 ≪ −1).29,14 At late times, all models converge toward (𝜔𝜔 ≈ −1), mimicking 

a cosmological constant. This indicates that, regardless of their early-time dynamics, all models evolve into a de Sitter-like dark 

energy-dominated phase. Expansion Dynamics 𝒂𝒂(𝒕𝒕), 𝒒𝒒(𝒕𝒕) and 𝑯𝑯(𝒕𝒕): The expansion dynamics confirm the dark energy 

behaviour. The scale factor 𝑎𝑎(𝑡𝑡) shows an exponential-like growth for all models, with Model IV being the most rapid means 

super-acceleration. The deceleration parameter 𝑞𝑞(𝑡𝑡) starts with large negative values suggesting an early inflationary phase and 

then stabilizes to a value consistent with sustained acceleration.16,37 The Hubble parameter 𝐻𝐻(𝑡𝑡) also shows rapid early-time 

variation before stabilizing, with Model IV (orange line) clearly maintaining the fastest expansion rate.32 
 

Kinematically, all five models successfully describe a universe that begins with a high-density state and evolves into a late-time 

accelerated expansion. However, their early-time dynamics are drastically different, suggesting distinct physical origins. This 

Fig.6:  Plots of cosmological Parameters of five Hubble Models Vs. time

Energy Density ρ(t) and Pressure p(t): All models show energy density ρ(t) starting at a very high value and decaying rapidly, 
converging to a small, positive constant at late times. This aligns with a hot, dense Big Bang-like origin followed by cosmic dilution 
and a late-time dark energy dominance.32,40 The pressure p(t) for all models diverges negatively at t → 0 and asymptotically approaches 
a negative constant value.33,42 This negative pressure is the necessary driver for the late-time accelerated expansion. Equation of State 
ω(t): The EoS parameter shows significant variation at early times, with Model II in particular exhibiting strong phantom behaviour 
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(ω ≈ -1).29,14 At late times, all models converge toward (ω ≈ -1), mimicking a cosmological constant. This indicates that, regardless 
of their early-time dynamics, all models evolve into a de Sitter-like dark energy-dominated phase. Expansion Dynamics a(t), q(t)  
and H(t): The expansion dynamics confirm the dark energy behaviour. The scale factor a(t) shows an exponential-like growth for 
all models, with Model IV being the most rapid means super-acceleration. The deceleration parameter q(t) starts with large negative 
values suggesting an early inflationary phase and then stabilizes to a value consistent with sustained acceleration.16,37 The Hubble 
parameter H(t) also shows rapid early-time variation before stabilizing, with Model IV (orange line) clearly maintaining the fastest 
expansion rate.32 Kinematically, all five models successfully describe a universe that begins with a high-density state and evolves 
into a late-time accelerated expansion. However, their early-time dynamics are drastically different, suggesting distinct physical 
origins. This analysis of what can happen now sets the stage for our final tests in the following sections: is it stable in Section 5 and 
is it physically allowed in Section 6.

5. Comparative study of Stability of Five Hubble Models

In this section, we proceed with the stability analysis for our five cosmological models. For a fluid description of the universe, the 
model is stable against small perturbations if the squared speed of sound is positive 
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the universe, the model is stable against small perturbations if the squared speed of sound is positive (𝑐𝑐𝑠𝑠2 > 0). A 

negative value (𝑐𝑐𝑠𝑠2 < 0) would imply an imaginary sound speed, leading to Laplacian instabilities. Since our derived 

pressure and density are functions of time, 𝑝𝑝(𝑡𝑡) and 𝜌𝜌(𝑡𝑡), the squared sound speed is calculated as: 𝑐𝑐𝑠𝑠2 = (𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ) =

𝑝̇𝑝 𝜌̇𝜌.⁄  The red dashed line at 𝑐𝑐𝑠𝑠2 = 0  in our plots (Fig. 7) is the threshold between stable and unstable regimes. We 

will now analyse each model based on this criterion. 

Model Early-Time Stability Late-Time Stability Comments 
I Unstable Unstable Disfavoured 
II Unstable Stable Acceptable after early time 
III Slight Instability Fully Stable Most Viable 
IV Highly Unstable Stable Acceptable with early quantum phase 
V Unstable Becomes unstable again Viable in transient phase 

 

From fig. 7, it is observed that, in Model I, the squared sound speed 𝑐𝑐𝑠𝑠2 < 0  throughout cosmic evolution, rising from a highly 

unstable value near(−14)  to around (−4), but never becoming positive. This indicates a classically unstable evolution, 

inconsistent with perturbation stability criteria in standard and modified gravity.47,48 Hence, Model I is not viable for a 

perturbatively stable cosmology. For Model II, there is initial instability due to a sharp negative dip, followed by a large 

overshoot into a positive region. After 𝑡𝑡 ≳ 2, 𝑐𝑐𝑠𝑠2 stabilizes to small positive values. This behaviour reflects a conditionally stable 

model with early-time phantom-like instability.33,51 potentially resolving into a viable dark energy model as the universe evolves. 

Model III exhibits only a brief early-time instability, followed by quick stabilization to a constant positive value 𝑐𝑐𝑠𝑠2 ≈ 4.5. 

This near-total positive behaviour aligns with physically acceptable cosmologies in both scalar field and modified gravity 

frameworks,46 making Model III the most stable and viable among all. Model IV undergoes severe early-time instability, with 

𝑐𝑐𝑠𝑠2 ≲ −150, suggesting a highly unstable regime near the initial singularity. However, it transitions into a stable phase with 

𝑐𝑐𝑠𝑠2 ≥ 0  at later times. Such behaviour may be interpreted as reflecting an early quantum-dominated inflationary phase, 

followed by classical stabilization.42,43 Model V starts with instability 𝑐𝑐𝑠𝑠2 < 0, becomes briefly stable within 0 < 𝑐𝑐𝑠𝑠2 < 2 during  

2 ≲ 𝑐𝑐𝑠𝑠2 ≲ 6, then decays back into instability. This transient stability resembles models with brief classical phases embedded 

within quantum or phantom dynamics,44,49 requiring further modification or additional fields for long-term viability. 
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From fig. 7, it is observed that, in Model I, the squared sound speed 𝑐𝑐𝑠𝑠2 < 0  throughout cosmic evolution, rising from a highly 

unstable value near(−14)  to around (−4), but never becoming positive. This indicates a classically unstable evolution, 

inconsistent with perturbation stability criteria in standard and modified gravity.47,48 Hence, Model I is not viable for a 

perturbatively stable cosmology. For Model II, there is initial instability due to a sharp negative dip, followed by a large 

overshoot into a positive region. After 𝑡𝑡 ≳ 2, 𝑐𝑐𝑠𝑠2 stabilizes to small positive values. This behaviour reflects a conditionally stable 

model with early-time phantom-like instability.33,51 potentially resolving into a viable dark energy model as the universe evolves. 

Model III exhibits only a brief early-time instability, followed by quick stabilization to a constant positive value 𝑐𝑐𝑠𝑠2 ≈ 4.5. 

This near-total positive behaviour aligns with physically acceptable cosmologies in both scalar field and modified gravity 

frameworks,46 making Model III the most stable and viable among all. Model IV undergoes severe early-time instability, with 

𝑐𝑐𝑠𝑠2 ≲ −150, suggesting a highly unstable regime near the initial singularity. However, it transitions into a stable phase with 

𝑐𝑐𝑠𝑠2 ≥ 0  at later times. Such behaviour may be interpreted as reflecting an early quantum-dominated inflationary phase, 

followed by classical stabilization.42,43 Model V starts with instability 𝑐𝑐𝑠𝑠2 < 0, becomes briefly stable within 0 < 𝑐𝑐𝑠𝑠2 < 2 during  

2 ≲ 𝑐𝑐𝑠𝑠2 ≲ 6, then decays back into instability. This transient stability resembles models with brief classical phases embedded 

within quantum or phantom dynamics,44,49 requiring further modification or additional fields for long-term viability. 
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From the perturbative stability perspective, Model III is the most reliable, exhibiting a consistently positive sound speed. 

Models II and IV are conditionally viable, provided early instabilities are attributed to quantum corrections or inflationary 

epochs. In contrast, Models I and V are predominantly unstable and are less favourable unless new stabilizing mechanisms are 

introduced.50 

 

6. Comparative Analysis of Energy Conditions 

Based on the energy conditions: WEC (𝜌𝜌 ≥ 0), NEC (𝑝𝑝 + 𝜌𝜌 ≥ 0), SEC (𝜌𝜌 + 3𝑝𝑝 ≥ 0) and DEC (𝜌𝜌 ± 𝑝𝑝 ≥ 0) ,, we have plotted all energy 

conditions for the five Hubble models. In this section, we interpret how well each one satisfies the physical viability criteria. It 

is critical to note that this analysis must be read in conjunction with the stability analysis from Section 5. A model must satisfy 

both perturbative stability (𝑐𝑐𝑠𝑠2 > 0) and (at minimum) the WEC and NEC to be considered physically viable. 

From Fig. 8, it is observed that in Model I becomes physically viable because all energy conditions are satisfied after a short 

initial phase. Early-time violations suggest an inflationary or exotic matter phase, transitioning smoothly to a standard matter-

dominated era, which is a common feature in emergent universe and loop-inspired inflationary scenario.19,20 Such models are 

known to violate the Strong Energy Condition (SEC) temporarily while maintaining physical viability at late times. However, 

as demonstrated in our stability analysis in section 5, this model is perturbatively unstable throughout its evolution (𝑐𝑐𝑠𝑠2 < 0). 

Therefore, despite appearing to pass the energy condition test at late times, Model I is not physically viable due to this underlying 

instability. Model II is marginally viable. Violations of the SEC and brief early-time WEC/NEC violations may hint at a bouncing 

or phantom-like phase, a feature consistent with 𝑓𝑓(𝑅𝑅,𝑇𝑇)and 𝑓𝑓(𝑄𝑄,𝑇𝑇) gravity theories.24,27 The stability improves as the universe 

evolves, indicating that initial violations could be attributed to effective quantum gravitational corrections or modified 

geometrical couplings.28 
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NEC and SEC indicates the dominance of exotic energy components, possibly mimicking phantom or super-inflationary 

behaviour. Similar conditions have been explored in the context of phantom dark energy and modified gravity where such 

violations lead to future singularities or non-standard evolution.14,29 Model V behaves similarly to a universe with an early-time 

singularity or quantum gravity phase, like the Big Bounce, and becomes viable only in the classical regime. Transient EC 

violations are often considered tolerable in many modified gravity theories,31,32 especially those designed to resolve the initial 

singularity problem while allowing a transition into standard cosmology. 
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to a late-time accelerated expansion driven by negative pressure, our analysis demonstrates that kinematic consistency alone is 

not a sufficient criterion for physical viability. 
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within the f(R,T) modified gravity framework. By employing a reconstruction method based on five distinct Hubble parameter 
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parametrizations, we have explored a wide range of cosmic histories, including emergent, bouncing, and transitional scenarios. 
While most of the models successfully describe the universe’s transition from an early-time (matter or radiation) phase to a late-time 
accelerated expansion driven by negative pressure, our analysis demonstrates that kinematic consistency alone is not a sufficient 
criterion for physical viability.

The crucial differentiator in our findings is the perturbative stability analysis. We found that:

•	 The Logamediate Model (Model III) is the most physically viable, exhibiting a brief early-time instability before quickly 
stabilizing to a positive squared sound speedfor 

 
 

• The Logamediate Model (Model III) is the most physically viable, exhibiting a brief early-time instability before 

quickly stabilizing to a positive squared sound speed (𝑐𝑐𝑠𝑠2 > 0) for the rest of its evolution. 

• The Power-law (Model II) and Exponential Decay (Model IV) models are only conditionally viable, as they suffer 

from severe early-time instabilities (𝑐𝑐𝑠𝑠2 < 0) even if they stabilize at late times. 

• The Emergent Exponential (Model I) and Emergent Tanh (Model V) models are found to be theoretically disfavoured, 

as they remain unstable throughout their entire evolution. 

Our work establishes that the stability analysis acts as a critical filter. Simply finding a model that matches the observed expansion 

history with (𝑞𝑞 < 0) is insufficient if the model is unstable to its own perturbations. Of the five models tested, only the 

Logamediate parametrization presents a dynamically stable and self-consistent cosmological history within this 𝑓𝑓(𝑅𝑅,𝑇𝑇) Kaluza-

Klein framework. 
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quickly stabilizing to a positive squared sound speed (𝑐𝑐𝑠𝑠2 > 0) for the rest of its evolution. 

• The Power-law (Model II) and Exponential Decay (Model IV) models are only conditionally viable, as they suffer 

from severe early-time instabilities (𝑐𝑐𝑠𝑠2 < 0) even if they stabilize at late times. 

• The Emergent Exponential (Model I) and Emergent Tanh (Model V) models are found to be theoretically disfavoured, 

as they remain unstable throughout their entire evolution. 

Our work establishes that the stability analysis acts as a critical filter. Simply finding a model that matches the observed expansion 

history with (𝑞𝑞 < 0) is insufficient if the model is unstable to its own perturbations. Of the five models tested, only the 

Logamediate parametrization presents a dynamically stable and self-consistent cosmological history within this 𝑓𝑓(𝑅𝑅,𝑇𝑇) Kaluza-

Klein framework. 
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 even if they stabilize at late times.
•	 The Emergent Exponential (Model I) and Emergent Tanh (Model V) models are found to be theoretically disfavoured, as they 

remain unstable throughout their entire evolution.
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